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CHAPITRE 0

NOTIONS PRÉLIMINAIRES

0.1 ) Rappels et généralités sur les ensembles

DÉFINITION (ensemble)

En mathématiques un ensemble est une collections d’objets distincts. Chacun des objet est
appelé ” élément ” de l’ensemble.
D’une manière plus simple, un ensemble peut être vu comme une boı̂te contenant des formes
toutes différentes les unes que les autres.

❏ L’ordre des éléments n’a pas d’importance
❏ Chaque élément de l’ensemble est unique, il ne peut donc pas y avoir de doublons.

Remarque

Généralement, un ensemble peut être définit de deux manières :

❍ En extension, on donne la liste des éléments
❍ En compréhension, on donne une propriété

Les éléments de l’ensembles doivent donc respecter la propriété.

Rappel de cours
Par conventions :

➢ Les ensembles sont notés avec une majuscule.
➢ Les éléments d’un ensembles sont entre accolades {. . .} et séparés par des virgules.

Exemples, Diffférentes définition d’un ensembles

Type d’ensemble Exemple Nombre d’éléments

Ensemble fini E = {1, 2, 3, 4, 5, 6} x

Ensemble infini E = R ∞

Ensemble vide E = {} ou E = ∅ 0

Singleton E = {juste moi} 1

Ensemble pair E = {toi, moi} 2

4



0.1. RAPPELS ET GÉNÉRALITÉS SUR LES ENSEMBLES 5

Remarque
Il existe d’autre types d’ensembles :

❍ L’ensemble booléen {0, 1}
❍ L’ensemble en compréhension : E = {x ∈ E | P(x)}

DÉFINITION (L’inclusion)

Soient A et B deux parties de E

On dit qu’un ensemble A est inclus dans un ensemble B si tous les éléments de A sont aussi
éléments de B.
Il faut que tous les éléments de A appartiennent aussi à B.
On note :

A ⊂ B ⇐⇒ ∀x ∈ A, x ∈ B

Si A ⊂ B alors on dit que ¡¡ A est une partie de B ¿¿. Ou alors que ¡¡ A est un sous-ensemble
de B ¿¿.

Exemple

{−1, 0, 1, 2} ̸⊂ N mais par contre, {−1, 0, 1, 2} ⊂ Z ⊂ R ⊂ C

DÉFINITION (L’égalité)

Soient A et B deux parties de E

Les ensembles A et B et sont égaux s’ils ont exactement les mêmes éléments.
On note :

∀x, (x ∈ A⇐⇒ x ∈ B)

Remarque

Pour montrer que deux ensembles sont égaux, il suffit de montrer l’inclusion
des ensembles dans les deux sens.
Soient E un ensemble et A,B deux parties de E

A = B ⇐⇒ A ⊂ B ∧B ⊂ A

Rappel de cours
Le symbole ∧ signifie ” et ”. Tandit que le symbole ∨ signifie ” ou ”.

Exemple d’application
Montrer que les ensembles suivants sont égaux.

A = {x2 − 4x+ 3 = 0} et B = {x = 1 ∨ x = 3}

Pour montrer que A ⊂ B, nous devons résoudre l’équation de degré 2.
∆ = b2 − 4ac = (−4)2 − 4× 1× 3 = 16− 12 = 4
Les racines réelles sont donc :

x1 =
4 +
√
4

2
=

6

2
= 3 et x2 =

4−
√
4

2
=

2

2
= 1

Les solutions de l’équation sont donc x = 1 et x = 3, exactement le contenu de l’ensemble B
ainsi, A ⊂ B.
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Pour montrer que B ⊂ A.
relenons chaque élément de B et montrons qu’il respecte la condition pour appartenir à A.
Soit x = 1 alors 12 − 4× 1 + 3 = 0 d’où 1 ∈ A
Soit x = 3 alors 32 − 4× 3 + 3 = 9− 12 + 3 = 0 d’où 3 ∈ A
Ainsi A contient 1 et 3 donc B ⊂ A.

Ainsi les deux inclusions montent que A = B.

DÉFINITION (L’union)

Soient A et B deux parties de E.
L’ union notée A ∪ B de deux ensemble représente l’ensemble des éléments présents dans A
ou dans B.
Autrement dit, faire l’union de deux ensembles revient à créer un ensemble contenant à la fois
les éléments de A puis ceux de B.
On note :

A ∪B = {x ∈ E | x ∈ A ∨ x ∈ B}

DÉFINITION (L’intersection)

Soient A et B deux parties de E.
L’ intersection notée A ∩ B de deux ensemble représente l’ensemble des éléments présents à
la fois dans A et aussi dans B.
Autrement dit, l’intersection de deux ensemble revient à créer un ensemble contenant les
éléments communs à A et B.
On note :

A ∩B = {x ∈ E | x ∈ A ∧ x ∈ B}

DÉFINITION (La différence)

Soient A et B deux parties de E.
La différence notée AnB de deux ensemble représente l’ensemble des éléments qui appar-
tiennent à A mais pas à B. On lit aussi ”A privé de B”.
Autrement dit, la différence de A par B revient à créer un ensemble qui contiendra les éléments
présent uniquement dans A.
On note :

AnB = {x ∈ A | x /∈ B}

DÉFINITION (Le complémentaire)

Soient A une partie de E.
Le complémentaire , noté ∁E(A) représente l’ensemble des éléments de E n’appartenent pas à
A. Le complémentaire peut aussi être noté Ac, A ou encore EnA.
On note :

∁E(A) = {x ∈ E | x /∈ A}
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Propriétés
❏ Propriété sur les ensembles

Soient E,F et G trois ensembles.

• ∅ ⊂ E (resp. F , resp. G).
L’ensemble vide est inclu dans tout ensemble.

• Réfléxivité E ⊂ E, un ensemble est inclu dans lui-même.

• Antisymétrie E ⊂ F et F ⊂ E ⇐⇒ E = F

Lorsque deux ensembles sont inclu l’un dans l’autre, cela implique forcément l’égalité.

• Transitivité E ⊂ F et F ⊂ G =⇒ E ⊂ G

❏ Le complémentaire ∁ est prioritaire sur l’union ∪ et sur l’intersection ∩.
❏ L’union ∪ et l’intersection ∩ sont prioritaire sur l’éfalité = et sur l’inclusion ⊂.
❏ Soient E une ensemble et A,B,C trois parties de E.

1. Propriété de l’union ∪ et de l’intercetion ∩
(a) Associativité :

(A ∩B) ∩ C = A ∩ (B ∩ C) (A ∪B) ∪ C = A ∪ (B ∪ C)

(b) Commutativité
A ∩B = B ∩ A A ∪B = B ∪ A

(c) Distributivité
(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

2. Propriété du complémentaire ∁
(a) ∁E(E) = ∅, si on prive un ensemble de lui-même, il ne retse rien.
(b) ∁E(∅) = E, si je prive E de rien, il me reste E.
(c) ∁E(∁E(A)) = A, le complémentaire s’annule.
(d) ∁E(A) ∪ A = E, on prive A pour ensuite faire l’union de E et A.
(e) ∁E(A) ∩ A = ∅, on prive A pour ensuite faire l’union de ce que l’on vient de priver.

(f) Distributivité du complémentaire
∁E(A ∪B) = ∁E(A) ∩ ∁E(B) ∁E(A ∩B) = ∁E(A) ∪ ∁E(B)

Remarque

Les propriétés du complémentaires et celles qui sont censées être connues
permettent de déterminer les égalités suivantes :

A\B = A ∪ ∁E(B) = A\(A ∩B) A = (A ∩B) ∪ (A ∩ ∁E(B))
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0.2 ) Rappel sur le produit cartésien

DÉFINITION (n-uplet & produit cartésien)

Soient n ≥ 2 ∈ N∗ et E1, E2, . . ., En n ensembles.

❏ ∀x1 ∈ E1, . . .xn ∈ En, (x1, . . . , xn) est un objet mathématique ordonné à n élément et est
aussi appelé n-uplet . ∀i ∈ [1;n], l’élément xi est la i-ième composante du n-uplet.

❏ Le produit cartésien des ensembles E1, . . ., En est l’ensemble noté E1 × . . . × En défini
par :

E1 × . . .× En = {(x1, . . . , xn) | x1 ∈ E1, . . . , xn ∈ En}

On note aussi
n∏

i=1

Ei

Exemple
Soient A = {1, 2, 3} et B = {1, 7, 8, 9} deux ensembles alors le produit cartésien AB est données
par :

AB = {(1, 1), (1, 7), (1, 8), (1, 9), (2, 1), (2, 7), (2, 8), (2, 9), (3, 1), (3, 7), (3, 8), (3, 9)}

0.3 ) Ensembles disjoints

DÉFINITION (ensemble disjoint)

En théorie des ensemble,
Soit E un ensemble et A,B deux parties de E. On dit que ” A et B sont disjoints ” lorsque :

A ∩B = ∅

En d’autre termes deux ensembles sont disjoints si ils n’ont aucun élément en commun.

Exemple
Soient A = {1, 8, 4, 5, 7}, B = {9, 10, 0, 2} et C = {1, 84, 7}

• A ∩B = {x ∈ A ∧ x ∈ B} = ∅, A et B sont disjoints.
• A ∩ C = {x ∈ A ∧ x ∈ C} = {1, 7}, A et C ne sont pas disjoints.
• B ∩ C = {x ∈ B ∧ x ∈ C} = ∅, B et C sont disjoints.



CHAPITRE 1

RELATIONS BINAIRES

1.1 ) Rappels et généralités

DÉFINITION (relation binaire)

Soit A, B deux ensembles.
Une relation binaire sur A et B est une partie R ⊆ A×B. Deux éléments a ∈ A, b ∈ B sont en
relation si et seulement si (a, b) ∈ R. On note alors aRb.

❏ Cas particulier, a = b alors R est ” une relation binaire sur A ”.

Exemples, représentation d’une relation binaire

1. Représentation ensembliste
En donnant l’ensemble des paires d’éléments en relation.

R = {(0, 7), (1, 7), (8, 2)}

2. Représentation matricielle
Une matrice M de A vers B Mij = 1 ↔ iRj avec i les lignes et j les colonnes de la
matrice.

M =

1 0 1
1 0 0
0 1 1


3. Représentation avec un graphe

Les sommets représentent les éléments de A puis de B. La présence d’un arc entre un
élément a ∈ A et un élément de b ∈ B signifique que aRb.
Diagramme sagittal

c

b

a

3

2

1

9
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Exemples, représentation d’une relation binaire sur A

1. Représentation ensembliste
Ici, les éléments de l’ensembles appartiennent à l’ensemble A× A.
Soit A = {a, b, c}
On a la relation R quelconque suivante :

R = {(a, a), (a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}

2. Représentation matricielle
Ici, puisque la relation se fait sur le même ensemble alors, la matrice sera carrée (i = j
même nombre de ligne et de colonne).
Considérons R = {(a, a), (b, a), (c, a), (c, c)}

M =

1 0 0
1 0 0
1 0 1


3. Représentation à l’aide d’un graphe

C

B

A

1.2 ) Propriété des relations binaires

Propriétés
Voici les propriétés fondamentale
Soit E une ensemble non vide et R une relation.
La relation R est dite :

➢ Réfléxive si ∀x ∈ E, xRx
➢ Symétrique si ∀(x, y) ∈ E2, xRy ⇔ yRx

➢ Antisymétrique si ∀(x, y) ∈ E2 on a (xRy ∧ yRx)⇒ x = y

➢ Transitive si ∀(x, y, z) ∈ E3 on a (xRy ∧ yRz)⇒ xRz

Exemple
Soit x, y ∈ E et R la relation x < y.
Si x < y alors y ̸< x cela impliquerait que x = y donc la relation ”inférieur strict” n’est pas
antisymétrique.
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1.3 ) Relation d’équivalence

DÉFINITION (relation d’équivalence)

Soit R une relation sur un ensemble non vide A. La relation R est dite d’ équivalence si et
seulement si R est :

❏ Réflexive ❏ Symétrique ❏ Transitive

Remarque Ainsi, pour montrer que R est une relation d’équivalence, il suffira de montrer
que les trois propriétés sont vérifiées.

DÉFINITION (classe d’équivalence)

Soit R une relation d’équivalence sur un ensemble non vide A et x ∈ A. La
classe d’équivalence notée R(x) représente l’ensemble des y ∈ R tel que xRy.

R(x) = {y ∈ A | xRy}

Autrement dit, la classe d’équivalence c’est en fait l’ensemble des éléments y de A qui sont en
relation avec x.

Remarque
❍ Chaque élément possède sa propre classe d’équivalence.
❍ Une classe d’équivalence contient entre 0 et |A| éléments.

Rappel de cours

Soit A un ensemble. On note |A| la cardinalité de l’ensemble, c’est à dire le nombre d’éléments
que contient l’ensemble.

DÉFINITION (Ensemble quotient)

Soit R une relation d’équivalence sur un ensemble non vide A et x ∈ A. L’ ensemble quotient
A\R représente l’ensemble des classe d’équivalences distinctes de R.

A\R = {R(x) | x ∈ A}

Remarque Il peut y avoir entre 1 et |A| classes d’équivalences distintes.
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Propriétés
Soit R une relation d’équivalence sur un ensemble non vide A. Alors les propriétés suivantes
sont vérifiées :

❏ R(x) ̸= ∅, ∀x ∈ A

❏ Si R(x) et R(y) deux classes d’équivalences dinstinctes de A\R alors :

∀x, y ∈ A R(x) ̸= R(y), R(x) ∩R(y) = ∅

❏ A =
⋃
x∈A
R(x)

Preuves / Démonstrations
1. R(x) ̸= ∅, ∀x ∈ A

Soit x ∈ A.
Puisque par définition d’une relation d’équivalence, R est réfléxive alors xRx
d’où x ∈ R(x) ainsi R(x) ̸= ∅.

2. ∀x, y ∈ A R(x) ̸= R(y), R(x) ∩R(y) = ∅
Soit x, y ∈ A avec R(x) ̸= R(y)
Alors

∃k ∈ A | k ∈ R(x) et k /∈ R(y) ou ∃k ∈ A | k /∈ R(x) et k ∈ R(y)

Supposons qu’il existre un k ∈ A tel que k ∈ R(x)
Alors par définition de relation d’équivalence, R est symétrique et puisque k ∈ R(x)
Alors on a xRk et kRx
Supposons que R(x) ∩R(y) ̸= ∅
Alors cela voudrait dire que ∃l ∈ A | l ∈ R(x) ∩R(y)
Donc on a xRl et yRl puis par symétrie lRx et lRy
Puis kRx, xRl et lRy par transitivité kRy puis yRk par symétrie
Ce qui signifie que k ∈ R(y), ce qui contredit notre hypothèse
Ainsi, R(x) ∩R(y) = ∅

3. A =
⋃
x∈A
R(x)

Soit x ∈ A
Alors x ∈ R(x) d’après 1.
Ducoup, par l’union A ⊂

⋃
x∈A
R(x)

De plus, R(x) ⊂ A par définition ∀x ∈ A
Alors, par l’union

⋃
x∈A
R(x) ⊂ A

Ainsi A =
⋃
x∈A
R(x)
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1.4 ) Partition d’un ensemble

DÉFINITION (partition)

Soit A ̸= ∅ et I un ensemvle d’indice. Une famille (Pi)i∈I de parties de A est une partition de A

si :
❏ ∀i ∈ I, Pi ̸= ∅ ❏ ∀i ̸= j ∈ I, Pi ∩ Pj = ∅ ❏

⋃
i∈I

Pi = A

Proposition
Soit A un ensemble non-vide.

❍ Soit R une relation sur A alors les classes d’équivalences distinctes forment une partition
de A.

❍ Soit (Pi)i∈I une partition de A. Alors la relation R définie sur A par :

∀x, y ∈ A xRy ⇔ ∃α ∈ I | x, y ∈ Pα

est une relation d’équivalence sur A.

Exemple
La relation suivante est-elle une relation d’équivalence?

∀x, y ∈ N xRy ⇔ |x− y| ≤ 2

1. Réfléxivité
Soit x ∈ N
Alors on a xRx = |x− x| = |0| = 0 < 2 alors R est réfléxive.

2. Symétrie
Soit x, y ∈ N
Alors on a |b− a| ≤ 2 xRy = |a− b| = |b− a| ≤ 2⇔ yRx
Ainsi, R est symétrique.

3. Transitivité
Soit x, y, z ∈ N
On a x = 2, y = 4 et c = 5
Alors :
|2− 4| = | − 2| = 2 ≤ 2 d’où xRy
|4− 5| = | − 1| = 1 ≤ 2 d’où yRz
Et |2− 5| = | − 3| = 3 > 2 alors la transitivité n’est pas respectée.
R n’est donc pas transitive, la relation n’est donc pas une relation d’équivalence.

Exercice
Pour chacune des relations binairesR suivantes, déterminer si elles sont réflexives, symétriques
ou transitives.

1. ∀a, b ∈ Q∗, aRb⇔ a.b > 0

2. ∀a, b ∈ Q∗, aRb⇔ a
b
∈ N∗

3. ∀a, b ∈ R, aRb⇔ a− b = a2 − b2
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1.5 ) Relation d’ordre

DÉFINITION (relation d’ordre)

Soit R une relation sur un ensemble A non-vide. La relation R est une relation d’ordre sur A si
elle est :

❏ Réflexive ❏ Antisymétrique ❏ Transitive

On parle d’ordre partiel sur A.

Remarque Une relation d’ordre est le plus souvent noté ≤ ou <.

DÉFINITION (relation d’ordre total)

Soit R une relation d’ordre sur un ensemble A. On parle de relation d’ordre total lorsque

∀x, y ∈ A xRy ou yRx

Autrement dit, si tout les éléments sont en relation entre eux alors on parle d’ordre partiel.
On parle aussi d’ordre total sur A.

Remarque
Si un ensemble A est doté d’une relation d’ordre est appelé
ensemble ordonné on note (A,R) et si A est doté d’une relation d’ordre total
on parlera donc d’ensemble totalement ordonné .

DÉFINITION (ordre produit)

Soient (A,R) et (B,S) deux relations d’ordre. Alors la relation T définie par :

∀(a, b), (c, d) ∈ A×B, (a, b)T (c, d)⇔ aRc et bSd

est une relation d’ordre partielle sur A×B. On l’appelle la relation d’ordre produit sur A×B.

DÉFINITION (ordre lexicographique)

Soient (A,R) et (B,S) deux relations d’ordre. Alors la relation L définie par :

∀(a, b), (c, d) ∈ A×B, (a, b)L(c, d)⇔ (a ̸= c, aRc) ou (a = c, bSd)

est une relation d’ordre sur A×B. On l’appelle aussi ordre lexicographique sur A×B.
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1.6 ) Diagramme de Hasse

DÉFINITION (prédécesseur, successeur)

Soit (A,≤) un ensemble ordonné, et soient x, y ∈ A deux éléments tels que x ≤ y, x ̸= y. On
suppose de plus qu’il n’existe aucun élément k ∈ A distinct de x et y tel que x ≤ k ≤ y.
Alors :

❏ x est appelé prédécesseur de y.

❏ y est appelé successeur de x.

Remarque

❍ La condition imposée sur l’existence de k sert à empêcher l’application de
la transitivité de la relation ≤ entre x et y.

❍ Ainsi, les notions de prédécesseur et successeur sont définies de manière
indépendante de la propriété de transitivité de la relation .

Tout ensemble ordonné fini (A,≤) peut être représenter à l’aide d’un diagramme dit ”de Hasse”
construit comme suit :

➢ Chaque point du graphe représente un élément de A

➢ La position de chaque point suit les conditions suivantes
➤ x, y ∈ A, x < y selon la relation ≤, le point représentant x est placé en dessous de celui

représentant y.
➤ Dans le cas contraire le point x sera au dessus du point y.

➢ Deux points x et y correspondant aux sommets et sont reliés par un segment allant de x à y.

Exemple (1)
On considère le graphe suivant

Graphe de la relation

BA

CD

Diagramme de Hasse

B

A

C

D

➤ On enlève les boucles qui n’apparaissent pas sur le diagramme de Hasse
➤ On enlève les ”arcs de transitivté”

Ici on a ARB et BRC on enlève donc l’arc ARC

Exemple (2)
On cosidère le graphe suivant.

Graphe de la relation

BA

CD

Diagramme de Hasse

B

A

D

C

➤ On enlève les ”arcs de transitivté” (ici il n’y en a pas)
➤ On enlève les boucles
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1.7 ) Extrema d’un ensemble ordonné

DÉFINITION (maximum, minimum, maximal, minimal)

Soit (A,≤) un ensemble ordonné fini et B ⊆ A un sous ensemble.

❏ b ∈ B est appelé minimum de B si ∀b′ ∈ B, on a b′ ≤ b

❏ b ∈ B est appelé maximum de B si ∀b′ ∈ B, on a b′ ≥ b

❏ b ∈ B est appelé minimal de B si ∀b′ ∈ B, on a b′ ≤ b =⇒ b′ = b

❏ b ∈ B est appelé maximal de B si ∀b′ ∈ B, on a b′ ≥ b =⇒ b′ = b

Remarque

à ne pas confondre
❍ Le minimum est le plus petit élément de B au sens de ≤, c’est à dire qu’il

est plus petit que tous les éléments de B. De plus il est unique.
Sur le diagramme de Hasse, le minimum b est une racine unique

❍ La minimal lui, il n’y a aucun élément qui peut être plus petit que lui, sinon
b′ = b au sens de ≤.
Dans le diagramme de Hasse, toutes les racines sont minimales.

Proposition
Soit (A,≤) un ensemble ordonné fini et B ⊆ A un sous-ensemble de A.
Alors si B admet un minimum (resp. maximum) alors il est unique.

Remarque La maximum est noté min(B), le maximum max(B), si ils existent bien sur.

DÉFINITION (majorant, minorant)

Soit (A,≤) un ensemble ordonné fini et B ⊆ A un sous-ensemble de A.

❏ Le réel α ∈ A est appelé majorant de B si : ∀b ∈ B, b ≤ α

❏ Le réel α ∈ A est appelé minorant de B si : ∀b ∈ B, b ≥ α

Remarque

❍ Si il existe, le plus grand des minorants est appelé Borne inférieure de B
et est noté inf(B)

❍ Si il existe, le plus petit des majorants est appelé Borne suppérieure de B

et est noté sup(B)

❍ Le minimum de B est la borne inférieure de B.
❍ Le maximum de B est la borne suppérieure de B.
❍ En somme le maximal (resp. minimal) n’est pas nécessairement une borne

de B.
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1.8 ) Morphisme d’ordre

DÉFINITION (morphisme d’ordre, isomorphisme d’ordre)

Soient (A,≤A) et (B,≤B) deux ensembles ordonnés et f : A→ B une application de A à valeurs
dans B.

❏ On appelle morphisme d’ordre de A vers B toute application de A à valeurs dans B tel
que :

∀x, y ∈ A x ≤A y ⇒ f(x) ≤B f(y)

❏ On appelle isomorphisme d’ordre de A vers B toute application bijective de A à valeurs
dans B tel que :

∀x, y ∈ A x ≤A y ⇔ f(x) ≤B f(y)



CHAPITRE 2

GRAPHES

2.1 ) Quelques généralités sur les graphes

DÉFINITION (graphe)

Un graphe G = (S, A, ϕ) est un triplet avec :

❏ S l’ensemble des sommets du graphe
❏ A l’ensemble des arêtes du graphes
❏ ϕ une application qui vas de A dans {S ′ ⊂ S | |S ′| = 2} qui à chaque arrête a ∈ A associe

une paire {s1, s2} de sommets, avec s1, s2 ∈ S.

Vocabulaire supplémentaire :
❏ Les sommets qui définissent une arête sont appelés extrémités.
❏ Deux sommets sont adjacents s’ils sont extrémités d’une même arrête.
❏ Un sommet est incident à une arête a si et seulement si, il est une extrémité de a.

Exemple

4

5

3

1

2

➤ Le sommet 1 et le sommet 5 sont adjacents, ce sont les extrémités d’une même arrête.
➤ 2 est incidente à l’arrête a = {2, 5}.
➤ Les extrémités de a = {2, 5} sont les sommets 2 et 5.

18
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Remarque

On peut simplifier la définition d’un graphe.
Soit G = (S, A) en spécifiant l’ensemble des pairs de sommets mis en relation :

A = {{s1, s2} | s1, s2 ∈ S}

A est l’ensemble des arrêtes.

DÉFINITION (degré)

Soit G = (S, A, ϕ) un graphe, le degré d’un sommet s ∈ S est le nombre d’arrêtes incidents à ce
sommet s.
Un sommet isolé si sont degré est nul.

Exemple
En reprenant l’exemple ci dessus, nous allons créer l’ensenble D = {(s, d) | s ∈ S, d ∈ N} où s
est un sommet du graphe et d est le degré du sommet :

D = {(1, 3), (2, 4), (3, 2), (4, 3), (5, 3)}

DÉFINITION (vocabulaire supplémentaire)

Soit G = (S, A, ϕ) un graphe,

❏ On appelle boucle une arrête où ses extrémités désignent le même sommet.

❏ Deux arrêtes sont dites parallèles (= multiple) si leurs extrémités sont les mêmes.

❏ Un graphe est dit simple si il ne possède aucune arrête multiple.

❏ Tandit qu’un graphe G est dit multiple si il possède au moins une arrête multiple.

Remarque

Lorsque la cardinalité de deux éléments de l’application ϕ n’est pas limitée à
2 on parle alors d’hypergraphe, les éléments de l’ensemble A sont donc des
hyperarêtes.
Un arrête multiple est une arrête qui relie plus de deux sommets.

Exemple d’hypergraphe

1 2 3

4 5

Ici, on a 3 hyperarêtes :

➤ a1 = {1, 2, 3} en bleu
➤ a2 = {1, 2, 3, 4, 5} en orange
➤ a3 = {2, 4, 5} en rouge
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Exemple de graphe multiple

A

B

C

D

E

F

Ici, G est un egraphe multiple car il possède une arrête multiple entre A et B.

DÉFINITION (S)

oit G = (S, A) un graphe simple,

❏ On appelle sous-graphe de G un graphe G′ = (S ′, A′) tel que :
S ′ ⊂ S, A′ ⊂ A et ∀{s1, s2} ∈ A⇒ {s1, s2} ∈ A′

Toutes les arrêtes A entre les sommets de S ′ ne sont pas conservées.
❏ On appelle sous-graphe induit de G le sous-graphe G′ = (S ′, A′) tel que :
S ′ ⊂ S et ∀s1, s2 ∈ S ′, {s1, s2} ∈ A⇒ {s1, s2} ∈ A′

Ici toutes les arrêtes entre les sommets de S ′ sont conservées.

Exemple
Soit le graphe suivant :

Graphe de la relation

BA

CE

D

Sous-Graphe

BA

CE

Sous-Graphe induit

BA

C

D

DÉFINITION (isomorphisme de graphe)

Soient G = (S, A) et G′ = (S ′, A′) deux graphes simples.
On dit que les graphes G et G′ sont isomorphes s’il existe une bijection ϕ : S → S ′ telle que :

∀s1, s2 ∈ S, {s1, s2} ∈ A⇔ {ϕ(s1), ϕ(s2)} ∈ A′

Remarque
❍ En pratique, G′ est un graphe dans lequel les sommets de A sont relabelisés

par une application bijective.
❍ Les somments sont éventuellement positionnés différemment sur le plan.
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Exemple (1)
On considère les graphes suivants.

Graphe G

A B

C D

Graphe G′

W Y

Z X
Dans notre cas, les deux graphes ci-dessus sont considérés comme différemment et étiqueté
différemment aussi. Mais structurellement ce sont les mêmes graphes. Si dans le graphe G′,
on change la place de X et Z, on obtient G.

Exemple (2)
On considère les graphes suivants.

Graphe G

A B

C D

E

Graphe G′

W Y

X Z

Dans notre cas, les deux graphes ci-dessus ne sont pas isomorphes.
Le graphe G contient un sommet supplémentaire E, tandis que le graphe G′ ne contient que
quatre sommets.
La structure des connexions diffère également, rendant les graphes non équivalents.

2.2 ) Graphes particuliers

DÉFINITION (voc supplémentaire)

❏ Un graphe est dit nul lorsqu’il ne possède aucune arrête.

❏ Un graphe est dit complet lorsqu’il existe une arrête entre chaque paires de sommets. On
note Kn le graphe complet à n sommets.

❏ On appelle chaine une suite finie de sommets (s0, s1, . . . , sk−1, sk) telle que ∀i ∈ [1, k − 1]
les sommets si et si+1 sont adjacents.

❏ Un cycle est un chemin reliant un sommet à lui-même, on note s0 = sk.

Remarque k est la longueur de la chaine, du cycle.
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Exemple

Graphe nul

X

Y

Z

Graphe Complet K5

1

2

3

4 5

Exemple
Une chaine puis un cycle

1

2

3

4

5

6

➤ 5− 2− 1− 4− 6 est une chaine simple de longueur 5
➤ 1− 3− 5− 2 est un cycle de longueur 4

Exercice
On considère le graphe suivant.
Déterminer si si ils existent les cycles, les chaines du graphe.

1

2

3

4

5

6

7

8 9

10

11

12

DÉFINITION (chaine simple, élémentaire)

Soit G = (S, A) un graphe.

❏ Une chaine simple est une chaine sans répétition d’arête.

❏ Une chaine élémentaire est une chaine sans répétition de sommet.

❏ Un cycle simple est un cycle sans répétition d’arête.

❏ Un cycle élémentaire est un cycle sans répétition de sommet.
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Remarque Une chaine élémentaire est forcément une chaine simple (resp. pour les
cycles).

DÉFINITION (Graphe connexe)

On dit qu’un graphe G est connexe si il existe un chemin entre toute paire de sommets.

Exemple
On considère les graphes suivants.

Graphe Connexe

1

2

3

4

5

6

Graphe Non Connexe

1

2

3 4

5

6

➤ Le graphe de droite n’est pas connexe car il n’existe pas de chemin entre les arêtes 3− 4.

DÉFINITION (Graphe acyclique)

Un graphe G est dit acyclique si il ne possède aucun cycle.

Exemple
On considère les graphes suivants.

Graphe Acyclique

1

2

3

4

5

6

Graphe non acyclique

1

2

3

4

5

6

➤ Le graphe de gauche est acyclique car il ne contient pas de cycles, ce qui en fait un arbre.
➤ Le graphe de droite contient un cycle entre les sommets 1, 3, 4, et 2.

DÉFINITION (composante connexe)

Soit G un graphe simple.
Tout sous-graphe G′ connexe et maximal de G est une composante connexe de G.
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Exemple
On considère les graphes suivants.

Graphe Connexe

1

2

3

4

5

6

7

8 9

10

11 12

Composante Connexe

6

7

8

11 12

➤ Le graphe de gauche est connexe car tous les sommets sont reliés entre eux par des
chemins.

➤ La composante connexe à droite est un sous-graphe de celui de gauche qui est également
connecté. Elle contient les sommets 6, 7, 8, 11, et 12.

2.3 ) Parcours de graphe

Soit G = (S, A) un graphe.
On part d’un sommet initial s ∈ S, on souhaite visiter l’ensemble des sommets.
On définit une marque de visite marquedi ∈ {vrai, faux}, ∀i ∈ S.
On vas utiliser une structure de donnée (SDD) pour stocker les sommets à visiter.
La complexité de cet algorithme est généralement o(n+m)
Cet algorithme permet de tester la connexité du graphe et les composantes connexes.

1 procedure parcours(G, s)

2 mettre marked_i ← faux , pour tout i dans S

3 poser SDD ← {s} et marked_s ← vrai

4 tant que SDD n’est pas vide

5 prendre i ← SDD.extraire ()

6 afficher i

7 pour tout les voisins j de i dans le graphe G

8 si marked_j = faux

9 SDD.inserer(j)

10 marked_j ← vrai

Remarque
Le parcours dépend du type de la structure de donnée :

❍ File parcours en largeur
❍ Pile parcours en profondeur
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2.4 ) Retour sur les graphes particuliers

2.4.1 ) Arbre et forêts

DÉFINITION (arbre, forêt)

❏ Un Arbre est un graphe connexe sans cycle.

❏ Une forêt est un graphe acyclique.

Exemple
On considère les graphes suivants.

Arbre
1

2

3

4 5

6

Forêt
1

2

3

4

5

6

7 8

➤ Le graphe de gauche est un arbre car il est acyclique et connecté.
➤ Le graphe de droite est une forêt, car il contient plusieurs arbres (ici, deux arbres) et est

acyclique.

DÉFINITION (voc supplémentaire)

❏ Les sommets d’un arbre sont des noeuds.
❏ Les arêtes d’un arbre sont des branches.
❏ Les noeuds de degré 1 sont des feuilles.

Proposition
Soit T = (N,B) un arbre avec |N | ≥ 2 (au moins 2 noeuds).
Alors T vérifie les propositions suivantes :

➢ Pour toute paire s1, s2 de noeuds avec s1 ̸= s2 ∈ N , il existe un unique chemin entre s1 et s2
➢ Si on enlève une branche à T , on obtient deux composantes connexes qui sont des arbres
➢ Si on ajoute une branche à T , alors on crée un cycle
➢ On a |B| = |N | − 1

Proposition
Soit G = (S, A) un graphe, c’est un arbre si il vérifie les propriétés suivantes :

➢ G est connexe ➢ G est acyclique ➢ |A| = |S| − 1
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2.4.2 ) Graphe bipartis

DÉFINITION (graphe biparti)

Soit G = (S, A) un graphe, on dit que G est biparti si il existe une bipartition (S1,S2) de S telle
que :

A = {{i, j} | i ∈ S1, j ∈ S2}

On note le graphe biparti G = (S1,S2, A)

Exemple
On considère le graphe biparti suivant.

1

2

3

4

5

6

➤ Le graphe ci-dessus est biparti car il peut être divisé en deux ensembles :

– Ensemble U = {1, 2, 3}
– Ensemble V = {4, 5, 6}

➤ Les arêtes relient uniquement les sommets de U aux sommets de V , et il n’y a aucune
arête entre les sommets de U ou entre les sommets de V .

Remarque On note Ki,j le graphe biparti complet tel que |S1| = i et |S2| = j

Proposition
Un graphe est biparti si il ne contient aucun cycle simple de longueur impaire.

Remarque conclusion de la proposition
Les arbres et les graphes de cycle de longueur paire sont donc bipartis.
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2.4.3 ) Graphe planaire

DÉFINITION (graphe planaire)

Un graphe G est dit planaire si il est isomorphe a un graphe tracé sur un plan sans que ses
arrêtes se croisent en dehors des sommets.
Autrement dit,
Un graphe GG est appelé planaire s’il peut être dessiné sur un plan de manière à ce que ses
arêtes ne se croisent pas, sauf aux sommets.

Exemple
On considère les graphes planaires suivants.

Graphe Planaire A

A B

CD

Graphe Planaire B (Cycle à 5 sommets)

1 2

34

5

DÉFINITION (voc supplémentaire)

Soit G un graphe planaire.

❏ Toute représentation dans R2 de G sans croisement d’arêtes en dehors des sommets est
appelée représentation planaire de G.

❏ Soit une représentation planaire de G. On appelle région planaire ou face de G toute
partie maximale F de R2 possédant la propriété suivante :

➤ Pour tous points p1, p2 ∈ F , il est possible de tracer une courbe entre entre p1 et p2
sans traverser une arête de G.

❏ La face non bornée du plan est appellée face externe ou infinie .
❏ Toute arête de G telle que tout segment qui la traverse contient ces points dans au moins

deux faces différentes de G est appelé face frontière .

Exemple de Graphe Planar
On considère le graphe suivant représenté dans le plan sans croisement d’arêtes en dehors
des sommets. Cela en fait une représentation planaire de ce graphe.

A B

CD

E

➤ Représentation Planaire de G : Ici, le graphe est dessiné dans le plan sans croisement
d’arêtes en dehors des sommets, ce qui constitue une représentation planaire de G.
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➤ Régions Planaires ou Faces : Dans cette représentation, on observe quatre régions
planaires :

– Trois faces internes : les triangles ABE, BCE, et CDE.

– Une face externe : la région entourant entièrement le graphe, appelée face infinie.

➤ Face Externe : La face qui s’étend à l’infini autour du graphe est appelée la face externe
ou infinie.

➤ Arêtes Frontières : Une arête frontière est une arête qui sépare deux faces. Dans ce
graphe, les arêtes AB, BC, CD, et DA sont des arêtes frontières car elles séparent la
face externe des différentes faces internes.

Proposition
Soit G = (S, A) un graphe planaire connexe avec n sommets, m arêtes et f faces. Alors toute
représentation planaire vérifie la relation d’Euler :

f = m− n+ 2

Remarque
Condition des propositions

❍ K5 est le graphe complet à 5 sommets, est non planaire.
❍ K3,3 est le graphe bipartis complet, est non planaire.

Remarque Preuve du théorème d’Euler, vue en TD.

Proposition
Soit G = (S, A) un graphe simple, planaire et connexe avec n ≥ 3 sommets, m arêtes et f faces.
Alors :

m ≤ 3n− 6

Preuve
Soit fi le nombre de face de longueur i.
On remarque que

∑
i i× f(i) = 2m et

∑
i fi = f

Comme G est simple, n ≥ 3 et f1 = f2 = 0
Alors :

2 =
∑
i

i× f(i) ≥
∑
i

3fi = 3
∑
i

= 3f

d’où f = 2
3
m

Puisque G est planaire et connexe. Il vérifie donc la formule d’Euler : f = m− n+ 2
donc m− n+ 2 ≤ 2

3
m⇔ m ≤ 3n+ 6
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2.4.4 ) Arbres couvrants

DÉFINITION (arbre couvrant)

Soit G = (S, A) un graphe simple.

❏ Un arbre couvrant de G est un sous-graphe couvrant de T de G qui est un arbre.

❏ Un sous-graphe couvrant de G est un sous-graphe G′ = (S ′, A′) telle que S = S ′

Exemple de Graphe, Arbre Couvrant, et Sous-Graphe Couvrant
On considère le graphe G suivant.
Un arbre couvrant de ce graphe est un sous-graphe qui relie tous les sommets sans former
de cycles. Un sous-graphe couvrant est un sous-graphe qui inclut tous les sommets mais peut
contenir des cycles.

Graphe G

A B

CD

E

Arbre Couvrant de G

A B

CD

E

Sous-Graphe Couvrant de G

A B

CD

E

➤ Arbre Couvrant : L’arbre couvrant de G est un sous-graphe qui relie tous les sommets
de G sans former de cycles. Ici, l’arbre couvrant est constitué des arêtes AE, BE, CE, et
DE, reliant tous les sommets via le sommet E sans boucle.

➤ Sous-Graphe Couvrant : Le sous-graphe couvrant inclut tous les sommets de G mais
conserve des cycles. Dans cet exemple, le sous-graphe couvrant contient un cycle formé
par les sommets A, B, E, C, et D.

2.5 ) Graphe pondéré

DÉFINITION (graphe pondéré)

Soit G = (S, A) un graphe simple et p : A→ R une application appelée pondération sur les arêtes
de G.

❏ Le couple (G, p) est appelé graphe pondéré , il peut aussi être noté G = (S, A, p)
❏ p(a) est le poid de l’arête a ∈ A.
❏ Pour tout sous-graphe G′ = (S ′, A′) de G, le réel p(G′) =

∑
a∈A, p(a) est appelé

poid du graphe G.

❏ Un arbre couvrant de poid minimum du graphe pondéré (G, p) est un arbre couvrant T ∗

dont le poids p(T ∗) est minimum parmi l’ensemble des poids de tous les arbres couvrants
de (G, p).
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Algorithme de Prim

1 Input : Graphe pond éré (G, p)

2 Output : Un arbre couvrant T = (N, B) de poids minimum

3

4 Prim(G)

5 Choisir un sommet s dans S

6 poser N ← {s} et B ← ∅
7 tant que les sommets ne sont pas couverts pas T

8 Choisir a = {i, j} dans A et i dans N, j pas dans N et p(a) minimal

9 si a existe

10 faire N ← N ∪ {j} et B ← ∪ {a}

11 sinon

12 retourner vide

13 retourner T = (N, B)

Remarque

Complément
❍ La complexité de la version naı̈ve est O(nm)

❍ La compléxité dépend de la File en priorité

– Liste, tableau : O(n2)

– Tas minimum : O(mlog(n))

– Tas de fibonacci : O(m+ nlog(n))

Il y a aussi l’algorithme de Kruskal, qui ne sera pas ajouté à ce cours.

Remarque

Soit G = (S, A, p) un graphe pondéré, il peut exister plusieurs plusieurs arbres
couvrant T = (N,B) de poids minimal.
Comment identifier les arbres couvrants

❍ Soit a /∈ B une arête de poids p(a) hors de l’arbre
❍ Son ajout dans B induit un cycle γ

❍ Pour toute arêtes a ∈ γ, le poids p(a′) ≥ p(a)

❍ Si il existe une arête arêtes a′ ∈ γ de poids p(a′) = p(a), alors T ′ =
(N,B ∪ {a}\{a′}) est un autre arbre couvrant de poids minimal.

2.6 ) Coloration de graphe

DÉFINITION (coloration, k-coloration, nombre chromatique)

❏ On appelle coloration d’un graphe G = (S,A) la donnée d’une application c : S 7→ N telle que
∀{i, j} ∈ A, c(i) ̸= c(j).
En gros l’action de colorer un graphe c’est le fait d’associer un entier (qui sera la couleur) à
chaque sommet tel que deux sommets adjacents n’ont pas la même couleur.

❏ Un graphe G = (S,A) est dit k-coloriable si il existe une coloration c : S 7→ {1 . . . k} valide.

❏ On appelle nombre chromatique noté X (G) le plus petit entier k tel que G est coloriable.
Ducoup c’est le nombre de couleur minimale valide pour colorer un graphe.

❏ Une clique représente un ensemble de sommets ayant chacun une couleur différente.

❏ Un stable est un ensemble de sommets ayant la même couleur.
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Remarque

• Soit Kn un graphe complet, alors X (Kn) = n

• Pour les cycles pairs X (G) = 2

• Pour les cycles impairs X (G) = 3

• Arbres et graphe bipartis X (G) = 2

2.6.1 ) L’Heuristique de Welsh et Powell
L’algorithme de Welsh et Powell permet de résoudre les problèmes de coloration de graphe. Ceci
consiste à attribuer une couleur à chaque sommet d’un graphe de manière à ce que deux sommets
adjacents (reliés par une arête) n’aient pas la même couleur. L’objectif est de minimiser le nombre total
de couleurs utilisées.

1. Les sommets sont trié par ordre de degré décroissant
2. Si deux sommets ont le même degré, leur ordre est quelconque
3. Le premier sommet de la liste prend une couleur
4. Pour chaque sommet restant :

• Attribuer la plus petite couleur disponible si les sommets adjacent ne l’utilisent pas.
• Sinon donner une nouvelle couleur

5. On retourne le nombre de couleurs utilisées.



CHAPITRE 3

ALGÈBRE DE BOOLE

3.1 ) Bases et généralités

L’algèbre de Boole est une branche des mathématiques proposée par Georges Boole en 1854 qui
traite des variables logiques et des opérations logiques. Elle constitue la base des circuits numériques
et de la logique informatique.
N’empêche c’est déjà pas mal vieux quand même

DÉFINITION (Algèbre de Boole)

Un Algèbre de Boole est un ensemble B muni de lois de compositions internes + l’addition et
· la multiplication et d’une application : B → B appelée ”complémentation”.
L’ensemble B contient au moins deux éléments notés 1 et 0.
Ainsi on note la structure d’un algèbre de Boole

(B,+, ·, )

Remarque

B possède une structure d’Algèbre de Boole si :

❏ Les lois + et · sont :

➩ Associatives
∀a, b, c ∈ B on a a+ (b+ c) = (a+ b) + c et a · (b · c) = (a · b) · c

➩ Commutatives
∀a, b ∈ B on a a+ b = b+ a et a · b = b · a

❏ 1 est l’élément neutre pour ·
❏ 0 est l’élément neutre pour +
❏ · et + sont distributives l’une par rapport à l’autre

a · (b+ c) = a · b+ a · c a+ (b · c) = a · b+ a · b

❏ Chaque a ∈ B possède un complémentaire a tel que :
a+ a = 1 a · a = 0

32
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Rappel de cours

(1) Éléments de base
L’ensemble B = {0, 1} dans le cas où l’Algèbre de
Boole possède deux éléments. Les éléments de
B représentent respectivement les valeurs faux et
vrai.
Notation ensembliste

• a+ b⇐⇒ a ∨ b le OU
• a · b⇐⇒ a ∧ b le ET

(2) Loi d’identité
• a+ 0 = a

• a · 1 = a

(3) L’application est le NOT

a+ b
b

0 1

a
0 0 1
1 1 1

a · b b
0 1

a
0 0 0
1 0 1

Proposition
Soit (B,+, ·, ) une algèbre de Boole.
Alors ∀a ∈ b, ∃a′ ∈ B tel que a + a′ = 1 et a · a′ = 0. Si a′ vérifie ces conditions alors a′ est le
complémentaire de a que l’on noté généralement a.
D’ailleur 0 = 1 et 1 = 0.
Et ∀a ∈ b on a a = a.

Remarque D’après la définition d’une algèbre de Boole, les deux lci et les éléments
neutres, jouent un rôle symétrique.

Proporition, à retenir absolument
Soit (B,+, ·, ) une algèbre de Boole et a, b, c ∈ B.
Les propriétés suivantes sont vérifiées :

❏ Indempotence a+ a = a et a · a = a

❏ Élément absorbant 1 + a = 1 et 0 · a = 0

❏ Absorption a · (a+ b) = a et a+ (a · b) = a

❏ Redondance a · b+ a · c = a · b+ a · c+ b · c
❏ Loi de Morgan a+ b = a · b et a · b = a+ b

Preuves
Nous utiliserons donc les notation ensemblistes :

• +⇐⇒ ∪ • · ⇐⇒ ∩

❏ a+ a = a
Par définition de l’algèbre de Boole, + signifie l’union. Ainsi l’union d’un élément avec lui
même donne lui même.
D’où a+ a = a

❏ a · a = a Par définition de l’algèbre de Boole, · signifie l’intersection. Ainsi l’intersection d’un
élément avec lui même donne lui même.
D’où a · a = a
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❏ 1 + a = 1
Dans l’algèbre de Boole, 1 est considéré comme élément absorbant dans l’union.
Ainsi, peu importe a, 1 reste absorbant avec l’union, d’où 1 + a = 1.

❏ 0 · a = 0
0 est l’élément absorbant pour l’intersection.
Peu importe a, l’intersection avec 0 donne toujours 0, donc 0 · a = 0.

❏ a · (a+ b) = a
Par distributivité, on a : a · (a+ b) = a · a+ a · b.
Par idempotence, a · a = a, donc a+ a · b.
Par absorption, a+ a · b = a, car a ”absorbe” a · b.

❏ a+ (a · b) = a
On a démontré ci-dessus que cette propriété découle de la loi d’absorption.

❏ a+ a · b = a+ b
Par distributivité, a+ a · b = (a+ a) · (a+ b).
Par la loi du complément, a+ a = 1.
Donc, 1 · (a+ b) = a+ b.

❏ a · a+ b = a · b
Par la loi du complément, a · a = 0.
Donc, a · a+ b = 0 + b = b.
Ainsi, l’expression se réduit à a · b.

3.2 ) Atomes

Théorème, relation d’ordre
Soit (B,+, ·, ) une algèbre de Boole. La relation ≤ définie sur B par :

∀a, b ∈ B a ≤ b⇐⇒ a · b = a

est une relation d’ordre sur B compatible avec ses deux lois. En plus, cette relation est stable avec les
opérations + et ·.

∀a, b, c ∈ b | a ≤ b c · a ≤ c · b et c+ a ≤ c+ b

Autrement dit
On dit que a ≤ b si et seulement si a · b = a. On dira alors que ”a est une partie de b”.

Remarque

• Dans une algèbre de Boole, 0 est le minimum, 1 le maximum.
• Si |B| ≥ 2 alors l’ordre n’est pas total
• La relation d’ordre est aussi définie par a ≤ b⇐⇒ a+ b = b

• L’inégalité suivante est vérifiée :
∀a, b ∈ B a · b ≤ a et b ≤ a+ b

DÉFINITION (atome)

Soit (B,+, ·, ) une algèbre de Boole finie. Alors x ∈ B est un atome de B si :

❏ x ̸= 0

❏ x possède deux minorants : 0 et lui-même
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Proposition
Soit (B,+, ·, ) une algèbre de Boole finie, et a ̸= 0 avec a ∈ B. L’ensemble des minorants de a
contient au moins un atome de B.

Rappel de cours
Minorant
Soit E un ensemble ordonné et m ∈ E. On dit alors que m est un minorant de E si :

m ≤ e ∀e ∈ E

En d’autres termes, le minorant est un élément qui est plus petit ou égal à tous les éléments de E
selon la relation d’ordre.

Remarque

Chaque élément de B est décrit par les atomes.
Un atome est un élément minimal non nul de B.
Autrement dit x ∈ B avec x ̸= 0 et ̸ ∃y ∈ B avec y ̸= 0 et y ̸= a tel que y ≤ x.

En gros chaque élément de B peut être décrit comme une somme (=
union) logique d’atomes de manière unique.

Exemple
Soit B = {0, a, b, a + b, 1} une algèbre de Boole avec 0 le plus petit élément et
1 le le plus grand.
Les atomes de B sont a et b car ils sont non-nuls et il n’y a aucun élément
entre 0 et a ou entre 0 et b.
Description de chaque éléments :

• 0 = ∅ (aucun atome)

• a = a et b = b décrit par eu même

• a+ b c’est l’union des deux atomes

• 1 = a+ b c’est le plus grand élément qui correspond à l’union de tous les
atomes.

Théorème description
Soit (B,+, ·, ) une algèbre de Boole finie contenant p atomes. Alors :

❏ Soit x et y deux atomes de B différents alors x · y = 0

❏
∑

p = 1, la somme de tous les atomes de B donne 1.
❏ Soit a ∈ B alors il s’écrit comme une somme d’atomes et a s’écrit sous la forme d’une somme

des atomes restant.
❏ |B| = 2p, le nombre d’éléments de B.
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3.3 ) Théorème de Stone

DÉFINITION (isomorphisme d’algèbre de Boole)

Soit (B,+, ·, ) et (B̃,+, ·, ) deux algèbres de Boole.
Toute application f : B → B̃ est un isomorphe d’algèbre de Boole si ∀a, b ∈ B :

❏ f(a+ b) = f(a) + f(b)

❏ f(a · b) = f(a) · f(b)
❏ f(a) = f(a)

Remarque
On a obligatoirement :

• f(0) = 0 et f(1) = 1

• Si f est un isomorphe d’algèbres de Boole alors f un un isomorphe d’ordre.

Théorème de Stone
Soit (B,+, ·, ) une algèbre de Boole finie.
Alors on dit qu’il est isomorphe à l’algèbre de Boole (P ([1, p]),∪,∩, ∁) où p est le nombre d’atomes
de B.

Preuve
Soit (B,+, ·, ) une algèbre de Boole.
D’après la caractérisation des éléments de B, ∀a ∈ B, ∃Ia ⊂ [1; p] unique tel que a =

∑
k=1

ak

Soit f une application définie par :

f : B → P ([1, p])

a 7→ Ia

Alors f est bijective et vérifie les propriétés suivantes :

• f(a+ b) = f(a) ∪ f(b)

• f(a · b) = f(a) ∩ f(b)

• f(a) = ∁[1,p]f(a)
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3.4 ) Algèbre de Boole engendrée

DÉFINITION (expression booléenne, littéral, ...)

Soit (B,+, ·, ) une algèbre de Boole, a1, . . . , an n éléments de B. Alors :

❏ Tout élément de B obtenu en combinant des éléments de B à l’aide d’un nombre fini
d’opération est appelée expression booléenne des éléments a1, . . . , an.

❏ On appelle littéral une expression booléenne d’un élément composé uniquement de ce
même élément ou de son complément.

❏ Un monôme est un produit d’un ou de plusieurs littéraux.

❏ Un monal est une somme d’un ou de plusieurs littéraux.

❏ Un minterme de n éléments a1, . . . , an est un monôme à n littéraux où chaque littéral en
position i est choisi en ai et ai et présent une seule fois.

❏ Un maxterme de n éléments a1, . . . , an est un monal à n littéraux où chaque littéral en
position i est choisi en ai et ai et présent une seule fois.

Remarque L’ensemble des expression booléenne constructible à partir des éléments
a1, . . . , an est noté G(a1, . . . , an).

DÉFINITION (algèbre de Boole engendrée)

Soit (B,+, ·, ) une algèbre de Boole et A ̸= ∅ une partie de B. L’ensemble A est appelée
sous-algèbre de Boole de B si la restiction des opérations de B aux éléments de A confère à
A une structure d’algèbre de Boole :

∀a, b ∈ B a+ b ∈ A a · b ∈ A a ∈ A

Proposition
Soit (B,+, ·, ) une algèbre de Boole et a1, . . . , an ∈ B alors l’ensemble des expression booléenne
G = (a1, . . . , an) est un sous algèbre de Boole de B.
Il est appelé algèbre de Boole engendré par les éléments a1, . . . , an.

Remarque
• D’après la loi de Morgan, et la propriété de distributivité, tout élément de
G = (a1, . . . , an) peut s’exprimer comme une somme de monômes.

• Tout atôme de G = (a1, . . . , an) est un monôme.

Théorème
Soit (B,+, ·, ) une algèbre de Boole et soient a1, . . . , an ∈ B. Les atomes de G = (a1, . . . , an) sont les
mintermes non nuls des éléments a1, . . . , an.

Caractérisation
Soit (B,+, ·, ) une algèbre de Boole et a1, . . . , an n éléments de B. Soit a ∈ G(a1, . . . , an).
Alors :

➩ Le produit de deux mintermes est nul.
➩ La somme de tous les mintermes est 1.
➩ La somme de deux maxtermes distincts est 1.
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➩ Le produit de tous les maxtermes est 0.
➩ ∀a ∈ G(a1, . . . , an) peut s’écrire sous la forme d’une somme de mintermes disctincts non nuls.
➩ ∀a ∈ G(a1, . . . , an) peut s’écrire sous la forme d’un produit de mintermes disctincts différents de

1.
➩ Lorsqu’un élément a ∈ G(a1, . . . , an) est écrit sous la forme de somme de mintermes distincts,

alors son complément noté a est quant à lui écrit avec la somme des mintermes restant.
➩ Lorsqu’un élément a ∈ G(a1, . . . , an) est écrit sous la forme de produits de maxtermes dinstincts

son complément noté a est quant à lui écrit avec le produit des maxtermes restant.
➩ Le nombre d’éléments de G(a1, . . . , an) est 2p où p peut être :

◦ Le nombre de mintermes non nul de G(a1, . . . , an)
◦ Le nombre de maxternes différents de 1 de G(a1, . . . , an)

Exemple
Soit (B,+, ·, ) une algèbre de Boole et a, b ∈ B si les mintermes de a et de b sont non nuls alors
le diagramme de Hasse de G(a, b) est donné par :

DÉFINITION (décomposition canonique)

Soient a1, . . . , an, n éléments d’une algèbre de Boole B et a ∈ G(a1, . . . , an). Alors

❏ La somme des mintermes distincts et non nuls de a1, . . . , an servant à décrire a est appelée
décomposition canonique disjonctive de l’élément a.

❏ Le produit des maxternes distincts et non nuls de a1, . . . , an servant à décrire a est appelé
décomposition canonuqye conjonctive de l’élément a.



CHAPITRE 4

THÉORIE DES CODES

4.1 ) Le codage de l’information

DÉFINITION (codage de l’information)

Le codage de l’information désigne l’étude de la façon de coder un message afin de le trans-
mettre d’un expéditeur vers un destinataire via un dispositif de transmission.

Schéma de M.Duhamel

Explications :
L’image illustre un processus de communication numérique avec un système de codage et de décodage
destiné à gérer les erreurs causées par le bruit ou les parasites dans un canal de transmission. Voici
une explication détaillée des différentes étapes :

• L’expéditeur c’est l’origine du message, la personne qui souhaite communiquer.
Dans l’exemple, le message qu’il envoi est une simple réponse ”oui” ou ”non”.

• Le message est ensuite envoyé sous forme de texte. Ici ”OUI”.
• L’encodeur converti le message en code binaire pour être transmit. Dans notre cas, OUI = 00000

et NON = 11111.
• Le codage répétitif permet de détecter et corriger les erreurs si des bits sont ”faussés”
• Le message traverse un canal de communication où il peut être exposé à des perturbations qui

peuvent alterner les bits.
• A la sortie du canal, le mot est 10010.
• Le décodeur lui possède le codage de base des mots du code OUI et NON puis le message

reçu.
• Dans notre cas ile regarde la distance entre le mot reçu et les mots possibles afin de détecter le

ou les erreurs puis de les corriger si possible.
• Dans notre exemple le mot est corrigé et le destinataire reçoit bien OUI.

39
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Théorie de l’information développée par Claude Shannon en 1948. Les 4 branches concernées sont
codage de l’information, compression de données, Transmission de message et cryptographie.

DÉFINITION (code & cie.)

❏ Un Alphabet est un ensemble A fini non vide et ses éléments sont appelés lettres.

❏ Un mot de longueur n ∈ N est un n-uplet (x1, . . . , xn) ∈ An de lettres.
Il se note aussi x1, . . . , xn où xi avec i ∈ N∗ est le i-ième bit du mot.

❏ Le mot vide noté ϵ est de longueur nulle, n = 0.
❏ L’ensemble de tous les mots est notée A∗ =

⋃
k∈NA

k

❏ Un code sur A est une partie C ⊆ A∗. Ses éléments sont des mots de code.

❏ Un code de longueur n est un code où tous les mots sont de longueur n.

Remarque Le code binaire repose alors sur l’alphabet A = {0, 1}.

DÉFINITION (erreur de transmission)

Soit menvoye et mrecu deux messages.
On dit qu’une erreur de transmission est survenue si le message reçu est différent du message
envoyé.

menvoye ̸= mrecu

Remarque Dans le cours de L2, on ne prend en compte que le cas ou un bit a été alteré.

Théorème
Soit n ∈ N et p ∈ J0; 1K la probabilité d’une erreur de transmission sur 1 bit. Alors la probabilité P(k)
qu’un mot de n bits soit transmit avec k ∈ J0;nK erreur est donnée par :

P(k) =
(
n
k

)
pk(1− p)n−k

DÉFINITION (distance de Hamming)

Soit n ∈ N et A un alphabet. La distance de Hamming est l’application :

d : An × A→ N
(u, v) 7→ d(u, v) = card({i ∈ [1;n] | ai ̸= bi})

où u = (a1, . . . , an) et v = (b1, . . . , bn) deux mots.
En gros la distance de Hamming représente le nombre de bits différents entre deux mots u et v.

Remarque

Lien avec le Diagramme de Hasse

La distance de Hamming correspond au plus
petit chemin entre deux mots dans le dia-
gramme de Hasse.
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DÉFINITION (Distance du code)

Soit C un code de longueur n. La distance du code est donnée par :

d(C) = min{d(u, b) | u, v ∈ C ∧ u ̸= v}

Règle du plus proche voisin
Soit C le code de longueur n et u ∈ An un mot reçu. Le plus proche voisin est de mot de code c ∈ C
minimisant la distance d(u, c).

4.2 ) Code détecteur, code correcteur

DÉFINITION (k-détecteur, k-correcteur)

❏ Le code C est dit k-correcteur si il permet de corriger un mot avec au plus k erreurs, à l’aide
de la règle du plus proche voisin sans se tromper.

❏ Le code C est dit k-détecteur si il permet de détecter k erreurs sur un mot reçu.

Remarque

• Si le mot reçu est un mot du code alors il n’y a aucune erreur.
• Un mot avec erreur ne peut pas toujours être corrigé si il existe plusieurs mots

du code à la même distance minimale. On ne peut donc pas choisir la solution
donc corriger le mot.

Théorème
Soit C un code de longueur n et k ∈ [1;n].

• Le code est dit k-détecteur si k ≤ d(C)− 1
d(C)− 1 est le nombre d’erreur détectée du code C

• Le code C est dit k-correcteur si k ≤ d(C)− 1

2⌊
d(C)− 1

2

⌋
est le nombre d’erreurs corrigées du code C

4.3 ) Différents codages possibles

Pour augmenter la distance d’un code,

• Codage par répétition on duplique f -fois chaque bit

• Codage par ajout de bit de parité
On ajoute un bit à la fin du mot en faisant en sorte que le nombre de bit à 1 soit pair.

Remarque Il existe évidemment de multiples autres codages possibles.
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DÉFINITION (n, M, D)

Un (n,M,D)-code est un code binaire tel que :

• n est la longueur du code (= longueur des mots du code)
• M le nombre de mots du code
• d la distance du code

Remarque étant donné n et d, on cherche à maximiser le nombre de mots que l’on peut
contruire.

DÉFINITION (sphère)

On appelle sphère de centre u ∈ {0, 1}n le rayon r ∈ N l’ensemble défini par :

S(u, r) = {v ∈ {0, 1}n | d(u, v) ≤ r}

Remarque
Pour toute sphères de rayon r composée de mots dans {0, n}n contient alors
r∑

i=0

(
n
i

)
mots.

4.4 ) Représentation du code

Tout code binaire C peut être représenté par une matrice notée C de M lignes et de n colonnes dont
chaque ligne représente un mot du code.

DÉFINITION (code équivalents)

Deux codes binaires sont dits équivalents si l’on peut obtenir l’un de ces codes à partir de
l’autre en combinant les opérations suivantes :

• Permutation des positions des lettres dans tous les mots du code
• Permutation des symboles (0, 1) apparaissant dans une position donnée des mots du code

Remarque Tout (n,M,D)-code binaire est équivalent à un (n,M,D)-code binaire conte-
nant le mot 000 . . . 0.


