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CHAPITRE O

NOTIONS PRELIMINAIRES

0.1) Rappels et généralités sur les ensembles

DEFINITION (ensembie)

En mathématiqgues un ensemble est une collections d’objets distincts. Chacun des objet est

appelé ” élément ” de I'ensembile.
D’une maniere plus simple, un ensemble peut étre vu comme une boite contenant des formes

toutes différentes les unes que les autres.
O Lordre des éléments n’a pas d'importance
 Chaque élément de I'ensemble est unique, il ne peut donc pas y avoir de doublons.

Généralement, un ensemble peut étre définit de deux maniéres :

O En extension, on donne la liste des éléments

O En compréhension, on donne une propriété
Les elements de I'ensembles doivent donc respecter la propriéte.

Remarque

Rappel de cours
Par conventions :

> Les ensembles sont notés avec une majuscule.
> Les éléments d’'un ensembles sont entre accolades {...} et séparés par des virgules.

Exemples, Diffférentes définition d’un ensembles

Type d’ensemble Exemple Nombre d’éléments
Ensemble fini E={1,2,3,4,5,6} 5
Ensemble infini E=R 00
Ensemble vide E={}ouE=10 0
Singleton E = {juste_moi} 1
Ensemble pair E = {toi, moi} 2
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0.1. RAPPELS ET GENERALITES SUR LES ENSEMBLES

Il existe d’autre types d’ensembles :

Remarque O Lensemble booléen {0, 1}
O Lensemble en compréhension : E = {z € E' | P(x)}

DEFINITION (Linclusion)

Soient A et B deux parties de £

On dit qu'un ensemble A est inclus dans un ensemble B si tous les éléments de A sont aussi
éléments de B.

[l faut que tous les éléments de A appartiennent aussi a B.

On note :

ACB<«<=VrecA zxzeB

Si A C B alors on dit que jj A est une partie de B ;. Ou alors que jj A est un sous-ensemble
de B ¢,

Exemple

{-1,0,1,2} ¢ N mais par contre, {—1,0,1,2} CZCRcCC

DEFINITION (égaiité)

Soient A et B deux parties de £
Les ensembles A et B et sont égaux s’ils ont exactement les mémes éléments.
On note :

Vo, (x € A<=z € B)

Pour montrer que deux ensembles sont €gaux, il suffit de montrer l'inclusion
des ensembles dans les deux sens.
Remarque Soient £ un ensemble et A, B deux parties de E
A=B<«<—= ACBABCA
Rappel de cours
Le symbole A signifie ” et ”. Tandit que le symbole V signifie ” ou ”.

Exemple d’application
Montrer que les ensembles suivants sont égaux.

A={2*—-4z+3=0}etB={z=1Vz =3}

Pour montrer que A C B, nous devons résoudre I'équation de degré 2.
A=b —dac=(-4)?—-4x1x3=16—-12=4
Les racines réelles sont donc :

4 4 6 4—+4 2

2 2 2 2
Les solutions de I'équation sont donc = = 1 et x = 3, exactement le contenu de I'ensemble B

ainsi, A C B.

X1
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»

Pour montrer que B C A.

relenons chaque élément de B et montrons qu'il respecte la condition pour appartenir a A.
Soitz=1lalors1?—-4x1+3=0douled

Soitz =3alors 3> —4x3+3=9-12+3=0dou3 e A

Ainsi A contient 1 et 3 donc B C A.

Ainsi les deux inclusions montent que A = B.

ya

DEFINITION (L'union)

Soient A et B deux parties de E.

L' union notée A U B de deux ensemble représente 'ensemble des éléments présents dans A
ou dans B.

Autrement dit, faire I'union de deux ensembles revient a créer un ensemble contenant a la fois
les éléments de A puis ceux de B.

On note :

AUB={z€E|xze€AVx e B}

a

DEFINITION (L’intersection)

Soient A et B deux parties de E.

L intersection notée A N B de deux ensemble représente 'ensemble des éléments présents a
la fois dans A et aussi dans B.

Autrement dit, I'intersection de deux ensemble revient a créer un ensemble contenant les
éléments communs a A et B.

On note :

ANB={ze€E|ze€ ANz € B}

DEFINITION (La différence)

Soient A et B deux parties de E.

La difféerence notée AnB de deux ensemble représente 'ensemble des éléments qui appar-
tiennent a A mais pas a B. On lit aussi "A privé de B”.

Autrement dit, la différence de A par B revient a créer un ensemble qui contiendra les éléments
présent uniquement dans A.

On note :

AnB={re€ A|z ¢ B}

D E FINITION (Le complémentaire)

Soient A une partie de E.
Le complémentaire, noté C(A) représente 'ensemble des éléments de E n’appartenent pas a

A. Le complémentaire peut aussi étre noté A°, A ou encore EnA.
On note :

Co(A)={z € E |z ¢ A}
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Propriétés
O Propriété sur les ensembles
Soient E, I et G trois ensembles.

° () C E (resp. F, resp. G).
Lensemble vide est inclu dans tout ensembile.

* Reéflexivité &£ C E, un ensemble est inclu dans lui-méme.

* Antisymétrie EC Fet FCE<= FE=F
Lorsque deux ensembles sont inclu I'un dans l'autre, cela implique forcément I'égalité.

* Transitivité FCc FetFCcG— FECG

O Le complémentaire C est prioritaire sur I'union U et sur l'intersection n.
O Lunion U et I'intersection N sont prioritaire sur I'éfalité = et sur l'inclusion C.
( Soient F une ensemble et A, B, C trois parties de E.
1. Propriété de I’'union U et de I'intercetion N
(a) Associativiteé :
(ANB)NC=An(BN(C) (AUB)UC =AU (BUCQC)
(b) Commutativité

ANB=BNA AUB=BUA

(c) Distributivite
(ANB)UC =(AUC)N(BUCQC) (AUB)NC=(ANnC)u(BNQC)

2. Propriété du complémentaire C
(@) Cx(E) = (Z) si on prive un ensemble de lui-méme, il ne retse rien.
(b) Cz(0) = E, si je prive E de rien, il me reste E.
(c) Cx(Cr(A )) A, le complémentaire s’annule.
(d) Cz(A) U A = E, on prive A pour ensuite faire 'union de E et A.
(e) CE( )N A =, on prive A pour ensuite faire 'union de ce que I'on vient de priver.
(f) Distributivité du complémentaire
Cr(AUB) =Cr(A)NCr(B) Ce(AN B) =Cg(A) Ulx(B)
Les propriétés du complémentaires et celles qui sont censées étre connues
Remarque permettent de déterminer les égalités suivantes :

A\B = AUlg(B)=A\(ANB) A= (AnB)u(AnCg(B))
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0.2) Rappel sur le produit cartésien

D) E FINITION (n-uplet & produit cartésien)

Soientn > 2 e N*et Fy, Es, ..., E, n ensembles.

Q Ve, € By, ...x, € By, (21,...,1,) st un objet mathématique ordonné a n élément et est
aussi appelé n-uplet. Vi € [1;n], I'élément z; est la i-iéme composante du n-uplet.

O Le produit cartésien des ensembles F, ..., E, est 'ensemble noté E; x ... x E, défini
par:

Elx...XEn:{(l’l,...,[L'n)|£L‘1€E1,...,Z’n€En}

n
On note aussi [] E;
=1

Exemple
Soient A = {1,2,3} et B = {1,7,8,9} deux ensembles alors le produit cartésien AB est données
par :

AB ={(1,1),(1,7),(1,8),(1,9),(2,1),(2,7),(2,8),(2,9),(3,1),(3,7),(3,8),(3,9) }

0.3) Ensembles disjoints

D) E FINITION (ensemble disjoint)

En théorie des ensemble,
Soit £ un ensemble et A, B deux parties de E. On dit que ” A et B sont disjoints " lorsque :

ANB=10

En d’autre termes deux ensembles sont disjoints si ils n’ont aucun élément en commun.

Exemple

Soient A = {1,8,4,5,7}, B={9,10,0,2} et C = {1,84,7}
* ANB={xe€ ANz e B} =10, Aet B sontdisjoints.
*cAnC={xe ANz eC}={1,7}, AetC ne sont pas disjoints.
* BNC={xe BAzxeC} =10, BetC sontdisjoints.



CHAPITRE 1

RELATIONS BINAIRES

1.1) Rappels et généralités

D E FINITI O [\ (relation binaire)

Soit A, B deux ensembles.
Une relation binaire sur A et B est une partie R C A x B. Deux éléments a € A, b € B sont en
relation si et seulement si (a,b) € R. On note alors aRb.

(1 Cas particulier, « = b alors R est ” une relation binaire sur A ”.

Exemples, représentation d’une relation binaire

1. Représentation ensembliste
En donnant 'ensemble des paires d’éléments en relation.

R ={(0,7),(1,7),(8,2)}
2. Représentation matricielle

Une matrice M de A vers B M;; = 1 < iRj avec i les lignes et j les colonnes de la
matrice.

_ o O
—_ o

3. Représentation avec un graphe
Les sommets représentent les éléments de A puis de B. La présence d’'un arc entre un
élément a € A et un élément de b € B signifique que aRb.
Diagramme sagittal
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Exemples, représentation d’une relation binaire sur A

1. Représentation ensembliste
Ici, les éléments de 'ensembles appartiennent a 'ensemble A x A.
Soit A = {a,b,c}
On a la relation R quelconque suivante :

R = {(a’ a)a (&7 b)? (@7 C)? (ba a)? (b’ C)a (C> a)a (Ca b>}
2. Représentation matricielle
Ici, puisque la relation se fait sur le méme ensemble alors, la matrice sera carrée (i = j

méme nombre de ligne et de colonne).
Considérons R = {(a,a), (b,a), (c,a), (c,c)}

1
M=11
1

3. Représentation a I'aide d’un graphe

&)
A
(»)
o

e e e

_ O O
SN—————

1.2) Propriété des relations binaires

Propriétés

Voici les propriétés fondamentale

Soit £ une ensemble non vide et R une relation.
La relation R est dite :

> Réfléxive siVz € E, 2Rz
> Symeétrique siV(z,y) € E?, 2Ry & yRx

> Antisymétrique siV(z,y) € E’ona (2Ry AyRx) =z =y

> Transitive siV(z,y,z) € F3ona (zRy AyRz) = 2Rz

Exemple

Soit z,y € F et R larelation z < y.

Si x < y alors y £ x cela impliquerait que x = y donc la relation “inférieur strict” n’est pas
antisymétrique.
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1.3) Relation d’équivalence

DEFINITION (relation d’équivalence)

Soit R une relation sur un ensemble non vide A. La relation R est dite d’équivalence si et

seulement si R est :
0 Réflexive 0 Symétrique O Transitive

Ainsi, pour montrer que R est une relation d’équivalence, il suffira de montrer
que les trois propriétés sont vérifiées.

D) E FINITION (classe d’équivalence)

Soit R une relation déquivalence sur un ensemble non vide A et z € A. La
classe d’équivalence notée R(x) représente 'ensemble des y € R tel que zRy.

Remarque

R(r) = {y € A| 2Ry}

Autrement dit, la classe d’équivalence c’est en fait 'ensemble des éléments y de A qui sont en
relation avec z.

O Chaque élément possede sa propre classe d’équivalence.
Remarque O Une classe d’équivalence contient entre 0 et | A| éléments.

Rappel de cours
Soit A un ensemble. On note |A| la cardinalité de I'ensemble, c’est a dire le nombre d’éléments
que contient I'ensemble.

DEFINITION (Ensemble quotient)

Soit R une relation d’équivalence sur un ensemble non vide A et = € A. L ensemble quotient
A\R représente 'ensemble des classe d’équivalences distinctes de R.

A\R = {R(z) | z € A}

Remarque || Il peuty avoir entre 1 et |A| classes d’équivalences distintes.
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Preuves / Démonstrations
1. R(z) #0,Vx € A

Propriétés
Soit R une relation d’équivalence sur un ensemble non vide A. Alors les propriétés suivantes
sont vérifiées :

O R(x)£0D, Ve e A
0 Si R(z) et R(y) deux classes d’équivalences dinstinctes de A\R alors :

0 A= UR@)

. Vr,ye A R(x) # R(y), R(x)NR(y) =10

. A= JR(z)
rcA
Soitz € A

CHAPITRE 1. RELATIONS BINAIRES

Vr,y € A R(x) # R(y), R(z)NR(y) =10

€A

Soit z € A.
Puisque par définition d’'une relation d’équivalence, R est réfléxive alors zRx
d’'ol z € R(z) ainsi R(z) # 0.

Soit z,y € A avec R(z) # R(y)
Alors

dkeA|lkeR(zr)etkd R(y)ouIke A |k ¢ R(x)etk € R(y)

Supposons qu’il existre un k € A tel que k € R(x)

Alors par définition de relation d’équivalence, R est symétrique et puisque k£ € R(x)
Alors on a xRk et KRz

Supposons que R(z) N R(y) # 0

Alors cela voudraitdire que 3l € A |l € R(z) NR(y)

Donc on a xR et yRI puis par symétrie IRz et IRy

Puis KRz, 2RI et IRy par transitivité KRy puis yRk par symétrie

Ce qui signifie que k € R(y), ce qui contredit notre hypothese

Ainsi, R(z) N R(y) =0

Alors z € R(x) d’apres 1.
Ducoup, par 'union A C |J R(z)
z€A
De plus, R(z) C A par définition Vx € A
Alors, par I'union |J R(z) C A
€A
Ainsi A = | R(x)

T€EA
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1.4) Partition d’un ensemble

DEFINITION (partition)

Soit A # () et I un ensemvle d’indice. Une famille (P;);c; de parties de A est une partition de A
Si:
QVviel, P#0 QAVi£Zjel,RbNP =10 o yr=A4

i€l

Proposition
Soit A un ensemble non-vide.

O Soit R une relation sur A alors les classes d’équivalences distinctes forment une partition
de A.

O Soit (P;);e; une partition de A. Alors la relation R définie sur A par :
Vr,y € A TRy < Jael|z,ye€ P,

est une relation d’équivalence sur A.

Exemple
La relation suivante est-elle une relation d’équivalence ?

Vr,y € N TRy & |z —y| <2

1. Réfléxivité
Soitz € N
Alors on a xRz = |z — x| = |0] = 0 < 2 alors R est réfléxive.
2. Symétrie
Soit x,y € N
Alorsonalb—a| <22Ry=la—bl=|b—a| <2< yRax
Ainsi, R est symétrique.
3. Transitivité

Soit z,y,z € N

Onaz=2,y=4etc=5

Alors :

|2—4|=|-2]=2<2douzRy
4—5|=|—-1=1<2douyRz

Et |2 — 5| = | — 3] = 3 > 2 alors la transitivité n’est pas respectée.

R n’est donc pas transitive, la relation n’est donc pas une relation d’équivalence.

Pour chacune des relations binaires R suivantes, déterminer si elles sont réflexives, symétriques
ou transitives.

1. Va,b € Q*, aRb < a.b >0
2. Va,b € Q*, aRb & § € N~
3. Va,be R, aRb< a—b=a’®—b?
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1.5) Relation d’ordre

DEFINITION (relation d’ordre)

Soit R une relation sur un ensemble A non-vide. La relation R est une relation d’ordre sur A si
elle est :

0 Réflexive 0 Antisymétrique O Transitive

On parle d’ordre partiel sur A.

Remarque || Une relation d’ordre est le plus souvent noté < ou <.

DEF'N'T'ON (relation d’ordre total)

Soit R une relation d’ordre sur un ensemble A. On parle de relation d’ordre total lorsque

Ve, y € A xRy ou yRx

Autrement dit, si tout les éléments sont en relation entre eux alors on parle d’ordre partiel.
On parle aussi d’ordre total sur A.

Si un ensemble A est doté dune relation dordre est appelé
Remarque ensemble ordonné on note (A, R) et si A est doté d’une relation d’ordre total

on parlera donc d’ensemble totalement ordonné .

DEF| N|T|ON (ordre produit)
Soient (A, R) et (B, S) deux relations d’ordre. Alors la relation 7 définie par :

V(a,b),(c,d) € A x B, (a,b)T (¢c,d) < aRe et bSd

est une relation d’ordre partielle sur A x B. On I'appelle la relation d’ordre produit sur A x B.

D E FINITION (ordre lexicographique)

Soient (A, R) et (B, S) deux relations d’ordre. Alors la relation £ définie par :

V(a,b),(c,d) € Ax B, (a,b)L(c,d) < (a # ¢, aRe) OU (a = ¢, bSd)

est une relation d’ordre sur A x B. On I'appelle aussi ordre lexicographique sur A x B.
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1.6) Diagramme de Hasse

D) E FINITION (prédécesseur, successeur)

Soit (A, <) un ensemble ordonné, et soient =,y € A deux éléments tels que z < y, x # y. On
suppose de plus qu’il n’existe aucun élément k£ € A distinct de x et y tel que z < k < y.
Alors :

O x est appelé prédécesseur de .

O y est appelé successeur de z.

O La condition imposée sur I'existence de k sert a empécher I'application de
la transitivité de la relation < entre z et y.

O Ainsi, les notions de prédécesseur et successeur sont définies de maniéere
indépendante de la propriété de transitivité de la relation .

Remarque

Tout ensemble ordonné fini (A, <) peut étre représenter a l'aide d’'un diagramme dit "de Hasse

construit comme suit :
> Chaque point du graphe représente un élément de A

> La position de chaque point suit les conditions suivantes
» z,y € A, x < y selon la relation <, le point représentant = est placé en dessous de celui

représentant y.

» Dans le cas contraire le point x sera au dessus du point y. .
> Deux points x et y correspondant aux sommets et sont reliés par un segment allant de x a y.

Exemple (1)
On considere le graphe suivant
Diagramme de Hasse

Graphe de la relation G
(A—(®)
©) (®)
© © )

» On enleve les boucles qui n’apparaissent pas sur le diagramme de Hasse

» On enleve les "arcs de transitivté”
Icion a ARB et BRC on enléve donc 'arc ARC

Exemple (2)
On cosidére le graphe suivant.
Graphe de la relation Diagramme de Hasse

=

» On enleve les "arcs de transitivté” (ici il n’y en a pas
» On enléve les boucles
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1.7) Extrema d’un ensemble ordonné

DEFINITION (maximum, minimum, maximal, minimal)

Soit (A, <) un ensemble ordonné fini et B C A un sous ensemble.
Qbe BestappelémdeBsiVb’ € B,onalt <b
Qbe BestappelémdeBsiVb/ € B,onab >b
a beBestappeIéWmaldeBsiVb’eB, onat <b=10 =0
a beBestappelémdeBsiVb’eB, onabt >b=1V=5>

a ne pas confondre

O Le minimum est le plus petit élément de B au sens de <, c’est a dire qu'il
est plus petit que tous les éléments de B. De plus il est unique.

Remarque Sur le diagramme de Hasse, le minimum b est une racine unique

O La minimal lui, il n’y a aucun élément qui peut étre plus petit que lui, sinon
b =bau sens de <.
Dans le diagramme de Hasse, toutes les racines sont minimales.

Proposition
Soit (A, <) un ensemble ordonné fini et B C A un sous-ensemble de A.
Alors si B admet un minimum (resp. maximum) alors il est unique.

Remarque || La maximum est noté min(B), le maximum maz(B), si ils existent bien sur.

D) E FINITI O [\ (majorant, minorant)

Soit (A, <) un ensemble ordonné fini et B C A un sous-ensemble de A.
a Le réel a € A est appelé majorant de B si : Vbe B,b< «

0 Le réel a € A est appelé minorant de B si: Vb e B,b>«

O Si il existe, le plus grand des minorants est appelé Borne inférieure de B
et est noté inf(B)

O Si il existe, le plus petit des majorants est appelé Borne suppérieure de B
Remarque et est noté sup(B)

O Le minimum de B est la borne inférieure de B.

O Le maximum de B est la borne suppérieure de B.

O En somme le maximal (resp. minimal) n’est pas nécessairement une borne
de B.
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1.8) Morphisme d’ordre

DEFINITION (morphisme d’ordre, isomorphisme d’ordre)

Soient (A, <,) et (B, <p) deux ensembles ordonnés et f : A — B une application de A a valeurs
dans B.

1 On appelle morphisme d’ordre de A vers B toute application de A a valeurs dans B tel
que :

Yo,y € A r<ay= f(z) <p f(y)

0 On appelle isomorphisme d’ordre de A vers B toute application bijective de A a valeurs
dans B tel que :

Ve, y € A r<aye f(z) < f(y)




CHAPITRE 2

GRAPHES

2.1) Quelques généralités sur les graphes

DEFINITION (graphe)

Un graphe G = (S, A, ¢) est un triplet avec :

S 'ensemble des sommets du graphe
0 A l'ensemble des arétes du graphes

[ ¢ une application qui vas de A dans {S' C S | |S'| = 2} qui a chaque arréte a € A associe
une paire {s;, s} de sommets, avec s;, s € S.

Vocabulaire supplémentaire :

0 Les sommets qui définissent une aréte sont appelés extrémités.
0 Deux sommets sont adjacents s’ils sont extrémités d’'une méme arréte.
0 Un sommet est incident a une aréte a si et seulement si, il est une extrémité de a.

Exemple

» Le sommet 1 et le sommet 5 sont adjacents, ce sont les extrémités d’'une méme arréte.

» 2 estincidente a lI'arréte a = {2, 5}.
» Les extrémités de a = {2,5} sont les sommets 2 et 5.
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On peut simplifier la définition d’un graphe.
Soit G = (S, A) en spécifiant 'ensemble des pairs de sommets mis en relation :

A = {{81,82} | 81,89 € S}

A est 'ensemble des arrétes.

Remarque

DEFINITION (degré)

Soit G = (S, A, ¢) un graphe, le degré d’'un sommet s € S est le nombre d’arrétes incidents a ce
sommet s.
Un sommet isolé si sont degré est nul.

Exemple
En reprenant 'exemple ci dessus, nous allons créer I'ensenble D = {(s,d) | s € S, d € N} ou s
est un sommet du graphe et d est le degré du sommet :

D= {(17 3)7 (27 4)7 (3’ 2)7 (47 3)7 (57 3>}

D E FINITION (vocabulaire supplémentaire)

Soit G = (S, A, ¢) un graphe,
1 On appelle boucle une arréte ou ses extrémités désignent le méme sommet.

0 Deux arrétes sont dites paralleles (= multiple) si leurs extrémités sont les mémes.

0 Un graphe est dit simple si il ne possede aucune arréte multiple.

O Tandit gu’un graphe G est dit multiple si il possede au moins une arréte multiple.

Lorsque la cardinalité de deux éléments de I'application ¢ n’est pas limitée a
2 on parle alors d’hypergraphe, les éléments de I'ensemble A sont donc des
hyperarétes.

Un arréte multiple est une arréte qui relie plus de deux sommets.

Remarque

Exemple d’hypergraphe

_________________________

Ici, on a 3 hyperarétes :
» a; ={1,2,3} en bleu
» ay; ={1,2,3,4,5} en orange
» a3z ={2,4,5} en rouge
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Exemple de graphe multiple

o

(™)
@B'

Ici, G est un egraphe multiple car il possede une arréte multiple entre A et B.

DEFINITION (s)
oit G = (S, A) un graphe simple,

1 On appelle sous-graphe de G un graphe G’ = (S, A') tel que :
S C S, A C Aet V{Sl, 82} c A= {81, 82} c A
Toutes les arrétes A entre les sommets de S’ ne sont pas conservées.
0 On appelle sous-graphe induit de G le sous-graphe G’ = (§', A’) tel que :
S'CcSetVs;,s0€S8, {s1,8} € A= {s1,5} € A
Ici toutes les arrétes entre les sommets de S’ sont conservées.

Exemple
Soit le graphe suivant :

Graphe de la relation Sous-Graphe Sous-Graphe induit

SRR

DEF| NITION (isomorphisme de graphe)

Soient G = (S, A) et ' = (S8, A’) deux graphes simples.
On dit que les graphes G et G’ sont isomorphes s'il existe une bijection ¢ : S — S’ telle que :

Vs, 80 € S, {51,802} € A= {P(s1),p(s2)} € A

O En pratique, G’ est un graphe dans lequel les sommets de A sont relabelisés
par une application bijective.

Remarque
O Les somments sont éventuellement positionnés différemment sur le plan.
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Exemple (1)
On considere les graphes suivants.

Graphe G Graphe

Dans notre cas, les deux graphes ci-dessus sont considérés comme difféeremment et étiqueté
difféeremment aussi. Mais structurellement ce sont les mémes graphes. Si dans le graphe &,
on change la place de X et Z, on obtient G.

Exemple (2)
On considere les graphes suivants.

Graphe ¢

o e Graphe G’

Dans notre cas, les deux graphes ci-dessus ne sont pas isomorphes.

Le graphe G contient un sommet supplémentaire E, tandis que le graphe G’ ne contient que
quatre sommets.

La structure des connexions differe également, rendant les graphes non équivalents.

2.2) Graphes particuliers

21

DEFINITION (voc supplémentaire)
0 Un graphe est dit nul lorsqu’il ne possede aucune arréte.
O Un graphe est dit complet lorsqu’il existe une arréte entre chaque paires de sommets. On
note K, le graphe complet a n sommets.

1 On appelle chaine une suite finie de sommets (so, s1,. .., Sx—1, k) telle que Vi € [1,k — 1]
les sommets s; et s;,1 sont adjacents.

0 Un cycle est un chemin reliant un sommet a lui-méme, on note sy = s.

Remarque || £ estlalongueur de la chaine, du cycle.
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Exemple
Graphe Complet K5
Graphe nul
Exemple

Une chaine puis un cycle
o
()
(O—®)

» 5—2—1—4— 6 estune chaine simple de longueur 5
» 1 —3—5—2estun cycle de longueur 4

On considere le graphe suivant.
Déterminer si si ils existent les cycles, les chaines du graphe.

DEF' NITION (chaine simple, élémentaire)
Soit G = (S, A) un graphe.

0 Une chaine simple est une chaine sans répétition d’aréte.

O Une chaine élémentaire est une chaine sans répétition de sommet.

0 Un cycle simple est un cycle sans répétition d’aréte.

O Un cycle élémentaire est un cycle sans répétition de sommet.
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Une chaine élémentaire est forcément une chaine simple (resp. pour les
cycles).

Remarque

D E FINITION (Graphe connexe)

On dit qu’'un graphe G est connexe si il existe un chemin entre toute paire de sommets.

Exemple
On considere les graphes suivants.
Graphe Connexe

Graphe Non Connexe
Galo
@ ©

» Le graphe de droite n’est pas connexe car il n’existe pas de chemin entre les arétes 3 — 4.

D E FINITION (Graphe acyclique)

Un graphe G est dit acyclique si il ne posséde aucun cycle.

Exemple

On considere les graphes suivants.
Graphe Acyclique Graphe non acyclique

HEO Noy @

» Le graphe de gauche est acyclique car il ne contient pas de cycles, ce qui en fait un arbre.
» Le graphe de droite contient un cycle entre les sommets 1, 3, 4, et 2.

D E FINITION (composante connexe)

Soit G un graphe simple.
Tout sous-graphe G’ connexe et maximal de GG est une composante connexe de G.
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Exemple

On considére les graphes suivants.
Graphe Connexe

Composante Connexe

» Le graphe de gauche est connexe car tous les sommets sont reliés entre eux par des
chemins.

» La composante connexe a droite est un sous-graphe de celui de gauche qui est également
connecté. Elle contient les sommets 6, 7, 8, 11, et 12.

2.3) Parcours de graphe

Soit G = (S, A) un graphe.

On part d’'un sommet initial s € S, on souhaite visiter 'ensemble des sommets.

On définit une marque de visite marqued; € {vrai, faux}, Vi € S.

On vas utiliser une structure de donnée (SDD) pour stocker les sommets a visiter.

La complexité de cet algorithme est généralement o(n + m)

Cet algorithme permet de tester la connexité du graphe et les composantes connexes.

1 procedure parcours (G, s)

2 mettre marked_i < faux, pour tout i dans S

3 poser SDD < {s} et marked_s ¢ vrai

4 tant que SDD n’est pas vide

5 prendre i < SDD.extraire ()

6 afficher i

7 pour tout les voisins j de i dans le graphe G
8 si marked_j = faux

9 SDD.inserer (j)

10 marked_j < vrai

Le parcours dépend du type de la structure de donnée :

Remarque O File parcours en largeur
O Pile parcours en profondeur
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2.4) Retour sur les graphes particuliers

2.4.1) Arbre et foréts

DEFINITION (arbre, forét)

1 Un Arbre est un graphe connexe sans cycle.

0 Une forét est un graphe acyclique.

Exemple

On considere les graphes suivants.
Arbre

» Le graphe de gauche est un arbre car il est acyclique et connecté.
» Le graphe de droite est une forét, car il contient plusieurs arbres (ici, deux arbres) et est
acyclique.

D) E FINITION (voc supplémentaire)
d Les sommets d’'un arbre sont des noeuds.
O Les arétes d’'un arbre sont des branches.
O Les noeuds de degré 1 sont des feuilles.

Proposition

Soit "= (N, B) un arbre avec | N| > 2 (au moins 2 noeuds).

Alors T vérifie les propositions suivantes :
> Pour toute paire s, s, de noeuds avec s; # sy € N, il existe un unique chemin entre s; et s,
> Sion enleve une branche a T, on obtient deux composantes connexes qui sont des arbres
> Si on ajoute une branche a T, alors on crée un cycle
> Onal|B|=|N|-1

Proposition
Soit G = (S, A) un graphe, c’est un arbre si il vérifie les propriétés suivantes :

> (G est connexe > (G est acyclique > Al =1S|-1
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2.4.2) Graphe bipartis

DEFINITION (graphe biparti)

Soit G = (S, A) un graphe, on dit que G est biparti si il existe une bipartition (S;,S,) de S telle
que :

A:{{z,j}|2681,]682}
On note le graphe biparti G = (51, Sz, A)

Exemple
On considere le graphe biparti suivant.

» Le graphe ci-dessus est biparti car il peut étre divisé en deux ensembles :
— Ensemble U = {1, 2,3}
— Ensemble V = {4,5,6}

» Les arétes relient uniquement les sommets de U aux sommets de V, et il n’'y a aucune
aréte entre les sommets de U ou entre les sommets de V.

Remarque || On note K, ; le graphe biparti complet tel que |S;| =i et |S;| = j

Proposition
Un graphe est biparti si il ne contient aucun cycle simple de longueur impaire.

conclusion de la proposition

Remarque Les arbres et les graphes de cycle de longueur paire sont donc bipartis.
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2.4.3) Graphe planaire

D E FINITION (graphe planaire)

Un graphe G est dit planaire si il est isomorphe a un graphe tracé sur un plan sans que ses
arrétes se croisent en dehors des sommets.

Autrement dit,

Un graphe GG est appelé planaire s'il peut étre dessiné sur un plan de maniere a ce que ses
arétes ne se croisent pas, sauf aux sommets.

Exemple

On considere les graphes planaires suivants.
Graphe Planaire A Graphe Planaire B (Cycle a 5 sommets)

N

D E FINITION (voc supplémentaire)

Soit G un graphe planaire.
O Toute représentation dans R? de G sans croisement d’arétes en dehors des sommets est
appelée représentation planaire de G.

O Soit une représentation planaire de G. On appelle région planaire ou face de G toute
partie maximale F de R? possédant la propriété suivante :

» Pour tous points pi,p. € F, il est possible de tracer une courbe entre entre p; et p,

sans traverser une aréte de G.
0 La face non bornée du plan est appellée face externe ou infinie.

O Toute aréte de G telle que tout segment qui la traverse contient ces points dans au moins
deux faces différentes de G est appelé face frontiere .

Exemple de Graphe Planar
On considere le graphe suivant représenté dans le plan sans croisement d’arétes en dehors
des sommets. Cela en fait une représentation planaire de ce graphe.

» Représentation Planaire de G : Ici, le graphe est dessiné dans le plan sans croisement
d’arétes en dehors des sommets, ce qui constitue une représentation planaire de G.
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» Régions Planaires ou Faces : Dans cette représentation, on observe quatre régions
planaires :

— Trois faces internes : les triangles ABE, BCE, et CDE.
— Une face externe : la région entourant entierement le graphe, appelée face infinie.

» Face Externe : La face qui s’étend a l'infini autour du graphe est appelée la face externe
ou infinie.

» Arétes Frontieres : Une aréte frontiere est une aréte qui sépare deux faces. Dans ce
graphe, les arétes AB, BC, C'D, et DA sont des arétes frontieres car elles séparent la
face externe des différentes faces internes.

Proposition
Soit G = (S, A) un graphe planaire connexe avec n sommets, m arétes et f faces. Alors toute
représentation planaire vérifie la relation d’Euler :

f=m-n+2

Condition des propositions

Remarque O Kj est le graphe complet a 5 sommets, est non planaire.
O Kj3 3 est le graphe bipartis complet, est non planaire.

Remarque || Preuve duthéoréme d’Euler, vue en TD.

Proposition
Soit G = (S, A) un graphe simple, planaire et connexe avec n > 3 sommets, m arétes et f faces.

Alors :

Preuve

Soit f; le nombre de face de longueur i.
Onremarque que ) ;i x f(i) =2met) . fi=f
Comme G est simple,n >3et fi = f,=0
Alors :

2= Yi x f(i) > Y3 = 3% = 3f

dou f = %m
Puisque G est planaire et connexe. Il vérifie donc la formule d’Euler : f = m —n + 2
doncm—n+2< §m<:>m§3n+6
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2.4.4) Arbres couvrants

D E FINITION (arbre couvrant)

Soit G = (S, A) un graphe simple.

 Un arbre couvrant de G est un sous-graphe couvrant de 7' de G qui est un arbre.

0 Un sous-graphe couvrant de GG est un sous-graphe G’ = (§’, A) telle que S = &’

Exemple de Graphe, Arbre Couvrant, et Sous-Graphe Couvrant

On considere le graphe G suivant.

Un arbre couvrant de ce graphe est un sous-graphe qui relie tous les sommets sans former
de cycles. Un sous-graphe couvrant est un sous-graphe qui inclut tous les sommets mais peut
contenir des cycles.

Graphe G Arbre Couvrant de G Sous-Graphe Couvrant de GG

» Arbre Couvrant : Larbre couvrant de G est un sous-graphe qui relie tous les sommets
de G sans former de cycles. Ici, I'arbre couvrant est constitué des arétes AE, BE, CE, et
DE, reliant tous les sommets via le sommet E sans boucle.

» Sous-Graphe Couvrant : Le sous-graphe couvrant inclut tous les sommets de G mais
conserve des cycles. Dans cet exemple, le sous-graphe couvrant contient un cycle formé
par les sommets A, B, E, C, et D.

2.5) Graphe pondéré

DEFINITION (graphe ponderé)
Soit G = (S, A) un graphe simple et p : A — R une application appelée pondération sur les arétes
de G.
O Le couple (G, p) est appelé graphe pondeéré, il peut aussi étre noté G = (S, A, p)
0 p(a) est le poid de l'aréte a € A.
O Pour tout sous-graphe G' = (S',A') de G, le réel p(G') = > .. p(a) est appelé
poid du graphe G.

O Un arbre couvrant de poid minimum du graphe pondéré (G, p) est un arbre couvrant 7*

dont le poids p(7*) est minimum parmi 'ensemble des poids de tous les arbres couvrants
de (G, p).
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Algorithme de Prim

1 Input : Graphe pondéré (G, p)
2 Output : Un arbre couvrant T = (N, B) de poids minimum
3
4 Prim(G)
3 Choisir un sommet s dans S
6 poser N < {s} et B« 0
7 tant que les sommets ne sont pas couverts pas T
8 Choisir a = {i, j} dans A et i dans N, j pas dans N et p(a) minimal
9 si a existe
10 faire N+ N U {j} et B+ U {a}
11 sinon
12 retourner vide
13 retourner T = (N, B)
Complément
O La complexité de la version naive est O(nm)
O La compléxité dépend de la File en priorité
Remarque

— Liste, tableau : O(n?)
— Tas minimum : O(mlog(n))

— Tas de fibonacci : O(m + nlog(n))
Il'y a aussi I'algorithme de Kruskal, qui ne sera pas ajouté a ce cours.

Soit G = (S, A, p) un graphe pondéré, il peut exister plusieurs plusieurs arbres
couvrant 7' = (N, B) de poids minimal.
Comment identifier les arbres couvrants

O Soit a ¢ B une aréte de poids p(a) hors de I'arbre

O Son ajout dans B induit un cycle ~

O Pour toute arétes a € v, le poids p(a’) > p(a)

O Si il existe une aréte arétes o’ € ~ de poids p(a’) = p(a), alors T =

(N, BU{a}\{d'}) est un autre arbre couvrant de poids minimal.

Remarque

2.6) Coloration de graphe

DEFINITION (coloration, k-coloration, nombre chromatique)

1 On appelle coloration d’un graphe G = (S, A) la donnée d’une application ¢ : S — N telle que

{3, j} € A, (@) # c(j)-
En gros l'action de colorer un graphe c’est le fait d’associer un entier (qui sera la couleur) a
chaque sommet tel que deux sommets adjacents n’ont pas la méme couleur.

[ Un graphe G = (S, A) est dit k-coloriable si il existe une coloration ¢ : S+ {1...k} valide.

0 On appelle nombre chromatique noté X' (G) le plus petit entier & tel que G est coloriable.
Ducoup c’est le nombre de couleur minimale valide pour colorer un graphe.

O Une clique représente un ensemble de sommets ayant chacun une couleur différente.

O Un stable est un ensemble de sommets ayant la méme couleur.
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» Soit K,, un graphe complet, alors X (K,,) =n
* Pour les cycles pairs X(G) = 2

* Pour les cycles impairs X(G) = 3

* Arbres et graphe bipartis X' (G) = 2

Remarque

2.6.1) L’Heuristique de Welsh et Powell

Lalgorithme de Welsh et Powell permet de résoudre les problemes de coloration de graphe. Ceci
consiste a attribuer une couleur a chaque sommet d’'un graphe de maniere a ce que deux sommets
adjacents (reliés par une aréte) n’aient pas la méme couleur. Lobjectif est de minimiser le nombre total
de couleurs utilisées.

Les sommets sont trié par ordre de degré décroissant

Si deux sommets ont le méme degré, leur ordre est quelconque
Le premier sommet de la liste prend une couleur

Pour chaque sommet restant :

Ll A

« Attribuer la plus petite couleur disponible si les sommets adjacent ne I'utilisent pas.
« Sinon donner une nouvelle couleur

5. On retourne le nombre de couleurs utilisées.



CHAPITRE 3

ALGEBRE DE BOOLE

3.1) Bases et généralités

Lalgebre de Boole est une branche des mathématiques proposée par Georges Boole en 1854 qui
traite des variables logiques et des opérations logiques. Elle constitue la base des circuits numériques
et de la logique informatique.

N’empéche c’est déja pas mal vieux quand méme

DEFINITION (aigébre de Boole)

Un Algebre de Boole est un ensemble B muni de lois de compositions internes + I'addition et

- la multiplication et d’une application : B — B appelée "complémentation”.
Lensemble B contient au moins deux €léments notés 1 et 0.
Ainsi on note la structure d’'un algebre de Boole

(B7+7"_)

B possede une structure d’Algebre de Boole si :
1 Les lois + et - sont :
=> Associatives
Va,b,ce Bonaa+ (b+c)=(a+b)+ceta-(b-c)=(a-b)-c
= Commutatives
Ya,be Bonaa+b=b+aeta-b=0>-a

Remarque O 1 est I'élément neutre pour -

0 0 est I'élément neutre pour +

O - et + sont distributives I'une par rapport a I'autre
a-(b+c)=a-b+a-c a+(b-c)=a-b+a-b

0 Chaque a € B possede un complémentaire a tel que :

ata=1 a-a=0

32
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Rappel de cours

(1) Eléments de base

Lensemble B = {0, 1} dans le cas ou I'Algebre de
Boole possede deux éléments. Les éléments de
B représentent respectivement les valeurs faux et

vrai.
Notation ensembliste b b
a+b 1 a-b 0T
ca+b<e=aVvbleOU 5 8 1 o
*a-b Able ET
a-ba RN EEEREEE

(2) Loi d’identité
cat+0=a

ca-l1=a

(3) Lapplication estle NOT

Proposition

Soit (B, +,-, ) une algébre de Boole.

Alors Va € b, 3’ € Btelque a +d = 1eta-d = 0. Si « vérifie ces conditions alors o’ est le
complémentaire de a que I'on noté généralement a.

D’ailleur0 =1et1 = 0.

EtVacbonaa=a.

D’aprés la définition d’'une algébre de Boole, les deux Ici et les éléments

Remarque . o .
neutres, jouent un réle symétrique.

Proporition, a retenir absolument

Soit (B, +,-, ) une algébre de Boole et a,b,c € B.
Les propriétés suivantes sont vérifiées :
J Indempotenceac +a=aeta-a=a
0 Elément absorbant 1 +a=1¢et0-a =0
0 Absorptiona - (a+b) =aeta+ (a-b) =a
J Redondancea-b+a-c=a-b+a-c+b-c
O LoideMorgana +b=a-beta-b=a+b

Preuves
Nous utiliserons donc les notation ensemblistes :

* +<—U e - <—N

Qat+a=a
Par définition de I'algebre de Boole, + signifie I'union. Ainsi 'union d’un élément avec lui
méme donne lui méme.
Dola+a=a

O a-a = a Par définition de I'algébre de Boole, - signifie I'intersection. Ainsi 'intersection d’un
élément avec lui méme donne lui méme.
Doua-a=a
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dl4+a=1

Dans I'algebre de Boole, 1 est considéré comme élément absorbant dans 'union.

Ainsi, peu importe a, 1 reste absorbant avec I'union, d'ou 1 +a = 1.
d0-a=0

0 est I'élément absorbant pour l'intersection.

Peu importe a, l'intersection avec 0 donne toujours 0, donc 0 - a = 0.
Qda-(a+b)=a

Par distributivité,ona:a-(a+b)=a-a+a-b.

Par idempotence, a - a = a, donc a + a - b.

Par absorption, a 4+ a - b = a, car a "absorbe” a - b.
Ja+(a-b)=a

On a démontré ci-dessus que cette propriété découle de la loi d’absorption.
da+a-b=a+0

Par distributivité, a +a@- b = (a +a) - (a + b).

Par la loi du complément, a +a = 1.

Donc, 1-(a+b) =a+b.
Qa-a+b=a-b

Par la loi du complément, a - @ = 0.

Donc,a-a+b=0+b=0b.

Ainsi, 'expression se réduit a a - b.

3.2) Atomes

Théoreme, relation d’ordre
Soit (B, +, -, ) une algebre de Boole. La relation < définie sur B par :

Va,b € B a<b<ea-b=a

est une relation d’ordre sur B compatible avec ses deux lois. En plus, cette relation est stable avec les
opérations + et -.

Va,b,cebla<b cca<c-betc+a<c+b

Autrement dit
On dit que a < b si et seulement si a - b = a. On dira alors que "a est une partie de b”.
» Dans une algebre de Boole, 0 est le minimum, 1 le maximum.
» Si |B| > 2 alors I'ordre n’est pas total
Remarque + Larelation d’ordre est aussi définiepara <b<=a+b=10
* Linégalité suivante est vérifiée :
Va,be Ba-b<aetb<a-+b

DEFINITION (atome)

Soit (B, +,-,7) une algebre de Boole finie. Alors x € B est un atome de B si :
dz#0
0 x possede deux minorants : 0 et lui-méme
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Proposition
Soit (B, +,-,7) une algeébre de Boole finie, et a # 0 avec a € B. Lensemble des minorants de a
contient au moins un atome de B.

Rappel de cours

Minorant _
Soit £ un ensemble ordonné et m € E. On dit alors que m est un minorant de E' si :

m<e Veec E

En d’autres termes, le minorant est un élément qui est plus petit ou égal a tous les éléments de E
selon la relation d’ordre.

Chaque élément de B est décrit par les atomes.
Un atome est un élément minimal non nul de B.
Autrement ditz € Bavecx #0et Ay € Bavecy # 0 ety # atel que y < .

En gros chaque élément de B peut étre décrit comme une somme (=
union) logique d’atomes de maniere unique.

Exemple

Soit B = {0,a,b,a + b,1} une algébre de Boole avec 0 le plus petit élément et
1 le le plus grand.

Les atomes de B sont a et b car ils sont non-nuls et il n'y a aucun élément
entre 0 et a ou entre 0 et b.

Description de chaque éléments :

Remarque

« 0 = ( (aucun atome)
* a = a etb=>bdécrit par eu méme
* a + b c’est 'union des deux atomes

* 1 =a+bc’estle plus grand élément qui correspond a l'union de tous les
atomes.

Théoréme description

Soit (B, +, -, ") une algebre de Boole finie contenant p atomes. Alors :
O Soit = et y deux atomes de B différents alors z - y = 0
0 > p=1,lasomme de tous les atomes de B donne 1.

(1 Soit @ € B alors il s’écrit comme une somme d’atomes et a s’écrit sous la forme d’'une somme
des atomes restant.

O |B] =27, le nombre d’éléments de B.
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3.3) Théoreme de Stone

DEFINITION (isomorphisme d’algébre de Boole)

Soit (B, +,-,7) et (B, +,-, ) deux algébres de Boole.

Toute application f : B — B est un isomorphe d’algébre de Boole siVa,b e B :
Q fla+0b) = f(a)+ f(b)
Q fa-b) = f(a)- f(b)
Q f@) = f(a)

On a obligatoirement :
Remarque * f(0)=0et f(1)=1
» Si f est un isomorphe d’algébres de Boole alors f un un isomorphe d’ordre.

Théoreme de Stone

Soit (B, +, -, 7) une algébre de Boole finie.

Alors on dit qu'il est isomorphe a I'algébre de Boole (P([1,p]), U, N, C) ol p est le nombre d’atomes
de B.

Preuve
Soit (B, +,-,7) une algebre de Boole.

D’apreés la caractérisation des éléments de B, Va € B, 31, C [1;p] unique tel que a = > ay
k=1
Soit f une application définie par :

f+B = P([1,p])
a— 1,

Alors f est bijective et vérifie les propriétés suivantes :
* fla+b) = f(a)U f(b)
* fla-b)=fla)N f(b)
* f(@) =Cpyfla)
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3.4) Algebre de Boole engendrée

DEFINITION (expression booléenne, littéral, ...)

Soit (B, +,-,7) une algebre de Boole, ay, . .., a, n éléments de B. Alors :

O Tout élément de B obtenu en combinant des éléments de B a I'aide d’'un nombre fini
d’opération est appelée expression booléenne des éléments ay, ..., a,.

0 On appelle littéral une expression booléenne d’un élément composé uniquement de ce
méme élément ou de son complément.

0 Un monome est un produit d’'un ou de plusieurs littéraux.

O Un monal est une somme d’un ou de plusieurs littéraux.

O Un minterme de n éléments a4, ...,a, est un monéme a n littéraux ou chaque littéral en
position i est choisi en a; et @; et présent une seule fois.

O Un maxterme de n éléments ay,...,a, est un monal a n littéraux ot chaque littéral en
position i est choisi en a; et @; et présent une seule fois.

Lensemble des expression booléenne constructible a partir des éléments
aiy,...,a, estnoté G(ay,...,a,).

DEF' NITION (algebre de Boole engendrée)

Soit (B,+,-,7) une algebre de Boole et A # () une partie de B. Lensemble A est appelée
sous-algebre de Boole de B si la restiction des opérations de B aux éléments de A confére a
A une structure d’algebre de Boole :

Remarque

Va,b € B at+tbeA a-be A aeA

Proposition
Soit (B, +,+,7) une algebre de Boole et a4, . . ., a,, € B alors 'ensemble des expression booléenne
G = (ay,...,a,) estun sous algebre de Boole de B.

Il est appelé algébre de Boole engendreé par les éléments a,, ..., a,.

» D’apres la loi de Morgan, et la propriété de distributivité, tout élément de
Remarque G = (ay,...,a,) peut s’exprimer comme une somme de mondmes.
+ Tout atbme de G = (ay, . . ., a,) €st un mondéme.

Théoreme
Soit (B, +,-,7) une algebre de Boole et soient a4, ...,a, € B. Les atomes de G = (a4, ...,a,) sont les
mintermes non nuls des éléments a4, ..., a,.

Caractérisation
Soit (B, +,-,7) une algebre de Boole et a4, ..., a, n €léments de B. Soita € G(ay, ..., a,).
Alors :

=> Le produit de deux mintermes est nul.

=> La somme de tous les mintermes est 1.

=> La somme de deux maxtermes distincts est 1.
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=> Le produit de tous les maxtermes est 0.

2 Va € G(ay,...,a,) peut s’écrire sous la forme d’'une somme de mintermes disctincts non nuls.

2 Va € G(ay,...,a,) peut s’écrire sous la forme d’un produit de mintermes disctincts différents de
1.

= Lorsqu’un élément a € G(ay,...,a,) est écrit sous la forme de somme de mintermes distincts,

alors son complément noté @ est quant a lui écrit avec la somme des mintermes restant.

= Lorsqu’un élément a € G(ay, ... ,a,) est écrit sous la forme de produits de maxtermes dinstincts
son complément noté @ est quant a lui écrit avec le produit des maxtermes restant.

= Le nombre d’éléments de G(ay, ..., a,) est 2? ou p peut étre :

o Le nombre de mintermes non nul de G(a,...,a,)
o Le nombre de maxternes différents de 1 de G(ay, ..., a,)

Exemple

Soit (B, +, -, ) une algébre de Boole et a,b € B si les mintermes de a et de b sont non nuls alors
le diagramme de Hasse de G(a, b) est donné par :

— /M\\"?%

a.b+ aE 7] ab+ab
W/

D) E FINITION (décomposition canonique)

Soient ay, . .., a,, n €éléments d’une algébre de Boole B eta € G(ay,...,a,). Alors

O La somme des mintermes distincts et non nuls de ay, . . ., a,, servant a décrire a est appelée
décomposition canonique disjonctive de I'élément a.

S!

O Le produit des maxternes distincts et non nuls de a4, ..., a, servant a décrire a est appelé
décomposition canonuqye conjonctive de I'élément a.




CHAPITRE 4

THEORIE DES CODES

4.1) Le codage de I'information

D E Fl NlTlON (codage de I’information)

Le codage de I'information désigne I'étude de la fagon de coder un message afin de le trans-
mettre d’un expéditeur vers un destinataire via un dispositif de transmission.

Schéma de M.Duhamel

OouUl : 00000 OUl : 00000
NON: 11111 bruit / parasites NON : 11111

o message encodé ) o
expéditeur encodeur décodeur expéditeur

Explications :

Limage illustre un processus de communication numeérique avec un systeme de codage et de décodage
destiné a gérer les erreurs causées par le bruit ou les parasites dans un canal de transmission. Voici
une explication détaillée des différentes étapes :

« Lexpeéditeur c’est I'origine du message, la personne qui souhaite communiquer.
Dans I'exemple, le message qu’il envoi est une simple réponse “oui” ou “non”.
» Le message est ensuite envoyé sous forme de texte. Ici "OUI".

» Lencodeur converti le message en code binaire pour étre transmit. Dans notre cas, OUI = 00000
et NON = 11111.

* Le codage répétitif permet de détecter et corriger les erreurs si des bits sont “faussés”

« Le message traverse un canal de communication ou il peut étre exposé a des perturbations qui
peuvent alterner les bits.

* A la sortie du canal, le mot est 10010.

« Le décodeur lui posséde le codage de base des mots du code OUI et NON puis le message
regu.

« Dans notre cas ile regarde la distance entre le mot regu et les mots possibles afin de détecter le
ou les erreurs puis de les corriger si possible.

« Dans notre exemple le mot est corrigé et le destinataire recoit bien OUI.

39
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Théorie de I'information développée par Claude Shannon en 1948. Les 4 branches concernées sont
codage de l'information, compression de données, Transmission de message et cryptographie.

DEFINITION (code & cie.)

‘

0 Un Alphabet est un ensemble A fini non vide et ses éléments sont appelés lettres.
0 Un mot de longueur n € N est un n-uplet (z4,...,z,) € A" de lettres.
Il se note aussi z1, ..., x, ou z; avec ¢ € N* est le :-ieme bit du mot.

O Le mot vide noté ¢ est de longueur nulle, n = 0.
O Lensemble de tous les mots est notée A* = | J, .y A"

0 Un code sur A est une partie C C A*. Ses éléments sont des mots de code.

0 Un code de longueur »n est un code ou tous les mots sont de longueur n.

Remarque || Le code binaire repose alors sur I'alphabet A = {0, 1}.

‘

DEFINITION (erreur de transmission)

Soit Mepvoye €1 Myee, dEUX Messages.

On dit qu'une erreur de transmission est survenue sile message recu est différent du message
envoye.

menvoye # mrecu

Remarque || Dans le cours de L2, on ne prend en compte que le cas ou un bit a été alteré.

Théoreme
Soit n € N et p € [0;1] la probabilité d’une erreur de transmission sur 1 bit. Alors la probabilité P(k)
qgu’un mot de n bits soit transmit avec k € [0; n] erreur est donnée par :

P(k) = <Z) PP —p)n*

‘

DEFINITION (distance de Hamming)

Soit n € N et A un alphabet. La distance de Hamming est 'application :

d: A" xA—N
(u,v) — d(u,v) = card({i € [1;n] | a; # b;})

ouu = (a,...,a,) etv=(by,...,b,) deux mots.
En gros la distance de Hamming représente le nombre de bits différents entre deux mots u et v.

111
Lien avec le Diagramme de Hasse /
La distance de Hamming correspond au plus 011 101 110
Remarque . : .
petit chemin entre deux mots dans le dia-
001 010 100
gramme de Hasse. |
000
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DEF' N|T|ON (Distance du code)

Soit C' un code de longueur n. La distance du code est donnée par :

d(C) = min{d(u,b) | u,v € C ANu # v}

Regle du plus proche voisin
Soit C' le code de longueur n et u € A™ un mot recu. Le plus proche voisin est de mot de code ¢ € C

minimisant la distance d(u, c).

4.2) Code détecteur, code correcteur

D) E FINITI O [\ (k-détecteur, k-correcteur)

O Le code C est dit k-correcteur si il permet de corriger un mot avec au plus & erreurs, a I'aide
de la regle du plus proche voisin sans se tromper.

O Le code C est dit k-détecteur si il permet de détecter & erreurs sur un mot regu.

+ Sile mot recu est un mot du code alors il N’y a aucune erreur.

» Un mot avec erreur ne peut pas toujours étre corrigé si il existe plusieurs mots
du code a la méme distance minimale. On ne peut donc pas choisir la solution
donc corriger le mot.

Remarque

Théoreme
Soit C' un code de longueur n et k € [1;n].

* Le code est dit k-détecteur si k < d(C) — 1
d(C) — 1 est le nombre d’erreur détectée du code C'

* Le code C' est dit k-correcteur si k& < —d(C) — 1

d -1 .
{%J est le nombre d’erreurs corrigées du code C

4.3) Différents codages possibles

Pour augmenter la distance d’un code,
« Codage par répétition on duplique f-fois chaque bit

« Codage par ajout de bit de parité
On ajoute un bit a la fin du mot en faisant en sorte que le nombre de bit a 1 soit pair.

Remarque || Il existe évidemment de multiples autres codages possibles.
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DEFINITION (n, M, D)

Un (n, M, D)-code est un code binaire tel que :

 n est la longueur du code (= longueur des mots du code)
* M le nombre de mots du code
* d la distance du code

étant donné n et d, on cherche a maximiser le nombre de mots que I'on peut

Remarque !
contruire.

DEFINITION (sphere)

On appelle sphere de centre u € {0,1}" le rayon r € N I'ensemble défini par :

S(u,r) ={ve{0,1}" | d(u,v) <r}

Pour toute sphéres de rayon » composée de mots dans {0, n}" contient alors
Remarque ~(n
> (2) mots.

1=0

4.4) Représentation du code

Tout code binaire C' peut étre représenté par une matrice notée C de M lignes et de n colonnes dont
chaque ligne représente un mot du code.

D E FINITION (code équivalents)

Deux codes binaires sont dits équivalents si 'on peut obtenir I'un de ces codes a partir de
'autre en combinant les opérations suivantes :

» Permutation des positions des lettres dans tous les mots du code

» Permutation des symboles (0, 1) apparaissant dans une position donnée des mots du code

Tout (n, M, D)-code binaire est équivalent a un (n, M, D)-code binaire conte-

Remarque
nant le mot 000...0.



